【题目】设函数f(x)=cos(2x+ )+2cos2x,x∈R.
(1)求函数f(x)的最小正周期和单调增区间;
(2)将函数f(x)的图象向右平移 个单位长度后得到函数g(x)的图象,求函数g(x)在区间 上的值域.
【答案】
(1)解:函数f(x)=cos(2x+ )+2cos2x=cos2xcos -sin2xsin +cos2x+1
= cos2x- sin2x+1=cos(2x+ )+1,
故函数的最小正周期为T= =π,
令2kπ+π≤2x+ ≤2kπ+2π,求得kπ+ ≤x≤kπ+ ,求得函数的增区间为[kπ+ ,kπ+ ],k∈Z.
(2)将函数f(x)的图象向右平移 个单位长度后得到函数g(x)=cos[2(x - )+ ]+1
=cos(2x - + )+1=cos(2x- )+1的图象,
由x∈[0, ],可得:2x- ∈[ , ],
可得:cos(2x - )∈[ ,1],
解得:g(x)=cos(2x- )+1∈[ ,2].
【解析】(1)对函数f(x)进行简单的三角恒等变换,结合辅助角公式可得出f(x)=cos(2x+ )+1,根据余弦函数的图象及其性质得出函数的增区间,(2)对f(x)经过平移得到g(x)的函数解析式,在区间内讨论得到g(x)的值域.
【考点精析】掌握函数y=Asin(ωx+φ)的图象变换是解答本题的根本,需要知道图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正数,a1=1,前n项和为Sn , 且an+12﹣nλ2﹣1=2λSn , λ为正常数.
(1)求数列{an}的通项公式;
(2)记bn= ,Cn= + (k,n∈N*,k≥2n+2). 求证:
①bn<bn+1;
②Cn>Cn+1 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)在R上存在导数f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(6﹣m)﹣f(m)﹣18+6m≥0,则实数m的取值范围为( )
A.[﹣3,3]
B.[3,+∞)
C.[2,+∞)
D.(﹣∞,﹣2]∪[2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 的圆心为 的圆心为N,一动圆与圆M内切,与圆N外切.
(1)求动圆圆心P的轨方迹方程;
(2)设A,B分别为曲线P与x轴的左右两个交点,过点 的直线 与曲线P交于C,D两点,若 ,求直线 的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知首项为 的等比数列{an}不是递减数列,其前n项和为Sn (n∈N*),且S3+a3 , S5+a5 , S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)若实数a使得a>Sn+ 对任意n∈N*恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:
①若,则;
②已知,,且与的夹角为锐角,则实数 的取值范围是;
③已知是平面上一定点,是平面上不共线的三个点,动点满足,,则的轨迹一定通过的重心;
④在中,,边长分别为,则只有一解;
⑤如果△ABC内接于半径为的圆,且
则△ABC的面积的最大值;
其中正确的序号为_______________________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为 (t为参数),曲线C的极坐标方程是 以极点为原点,极轴为x轴正方向建立直角坐标系,点M(﹣1,0),直线l与曲线C交于A,B两点.
(1)写出直线l的极坐标方程与曲线C的普通方程;
(2)线段MA,MB长度分别记|MA|,|MB|,求|MA||MB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 f(x)=x﹣ln x﹣2.
(Ⅰ)求函数 f ( x) 的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在区间(1,+∞)上恒成立,求k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+alnx(a为实常数)
(Ⅰ)若a=﹣2,求证:函数f(x)在(1,+∞)上是增函数;
(Ⅱ)求函数f(x)在[1,e]上的最小值及相应的x值;
(Ⅲ)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com