精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程6x-y+7=0.
(1)求函数y=f(x)的解析式;
(2)求函数g(x)=x2-9x+a+2与y=f(x)的图象有三个交点,求a的取值范围.
【答案】分析:(1)由图象过点P(0,2)求出d的值,再代入求出导数,再由切线方程求出f(-1)、f′(-1),分别代入求出b和c的值;
(2)将条件转化为=a有三个根,再转化为的图象与y=a图象有三个交点,再求出h(x)的导数、临界点、单调区间和极值,再求出a的范围即可.
解答:解:(1)由f(x)的图象经过点P(0,2),得d=2.
∴f′(x)=3x2+2bx+c,
由在M(-1,f(-1))处的切线方程是6x-y+7=0,
∴-6-f(-1)+7=0,得f(-1)=1,且f′(-1)=6.
,即,解得b=c=-3.
故所求的解析式是f(x)=x3-3x2-3x+2.
(2)∵函数g(x)与f(x)的图象有三个交点,
∴方程x3-3x2-3x+2=x2-9x+a+2有三个根,
=a有三个根,
,则h(x)的图象与y=a图象有三个交点.
接下来求h(x)的极大值与极小值,
∴h′(x)=3x2-9x+6,令h′(x)=0,解得x=1或2,
当x<1或x>2时,h′(x)>0;当1<x<2时,h′(x)<0,
∴h(x)的增区间是(-∞,1),(2,+∞);减区间是(1,2),
∴h(x)的极大值为h(1)=,h(x)的极小值为h(2)=2
因此2<a<
点评:本题导数的几何意义、切点坐标的应用,导数研究函数的性质:单调性和极值等,涉及了函数图象的交点与方程之间的转化问题,待定系数法求解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案