抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为2
,求该抛物线的方程,并写出它的焦点坐标与准线方程.
科目:高中数学 来源: 题型:
如图,在平面直角坐标系xOy中,F1,F2分别是椭圆
+
=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.
(1)若点C的坐标为
,且BF2=
,求椭圆的方程;
(2)若F1C⊥AB,求椭圆离心率e的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知双曲线C:
-
=1(a>0,b>0)的离心率为2,A,B为其左,右顶点,点P为双曲线C在第一象限的任意一点,点O为坐标原点,若PA,PB,PO的斜率为k1,k2,k3,则m=k1k2k3的取值范围为( )
A.(0,3
) B.(0,
)
C.
D.(0,8)
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,曲线C由上半椭圆C1:
+
=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为
.
![]()
(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
对一批产品的长度(单位:毫米)进行抽样检测, 如图为检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上为一等品, 在区间[15,20)和[25,30)上为二等品, 在区间[10,15)和[30,35)上为三等品. 用频率估计概率, 现从该批产品中随机抽取1件, 则其为二等品的概率是( )
![]()
A.0.09 B.0.20
C.0.25 D.0.45
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com