精英家教网 > 高中数学 > 题目详情
5.在极坐标系中,已知曲线C1的极坐标方程ρ2cos2θ=8,曲线C2的极坐标方程为θ=$\frac{π}{6}$,曲线C1,C2相交于A,B两点.以极点O为原点,极轴所在直线为x轴建立平面直角坐标系,已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数).
(1)求A,B两点的极坐标;
(2)曲线C1与直线l分别相交于M,N两点,求线段MN的长度.

分析 (1)由曲线C1的极坐标方程ρ2cos2θ=8,曲线C2的极坐标方程为θ=$\frac{π}{6}$,得ρ2cos$\frac{π}{3}$=8,所以ρ2=16,求出ρ,即可求A,B两点的极坐标;
(2)利用参数的几何意义,求线段MN的长度.

解答 解:(1)由曲线C1的极坐标方程ρ2cos2θ=8,曲线C2的极坐标方程为θ=$\frac{π}{6}$,得ρ2cos$\frac{π}{3}$=8,所以ρ2=16,即ρ=±4
所以A,B两点的极坐标为:A(4,$\frac{π}{6}$),B(-4,$\frac{π}{6}$)…(4分)
(2)由曲线C1的极坐标方程得其直角坐标方程为x2-y2=8,…(5分)
将直线$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$代入x2-y2=8整理得t2+2$\sqrt{3}$t-14=0…(6分)
即t1+t2=-2$\sqrt{3}$,t1•t2=-14,…(8分)
所以|MN|=$\sqrt{(-2\sqrt{3})^{2}-4×(-14)}$=2$\sqrt{17}$.   …(10分)

点评 本题考查了极坐标与直角坐标的互化公式、此时方程化为普通方程、弦长公式等基础知识与基本技能方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.经过点M(2,1)作圆C:x2+y2=5的切线,则切线方程是2x+y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求满足下列条件的直线的一般式方程:
(Ⅰ)经过两条直线2x-3y+10=0  和3x+4y-2=0 的交点,且垂直于直线3x-2y+4=0
(Ⅱ)与两条平行直线3x+2y-6=0及6x+4y-3=0等距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D.测得∠BCD=15°,∠BDC=30°,CD=40米,并在点C测得塔顶A的仰角为60°,则塔高AB=20$\sqrt{6}$米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$f(x)=\overrightarrow a•\overrightarrow b$,其中向量$\overrightarrow a=({\sqrt{3}sin2x,1}),\overrightarrow b=({1,cos2x})$(x∈R),
(1)求函数y=f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别为a、b、c,已知f (A)=2,a=$\sqrt{7}$,b=$\sqrt{3}$,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式(a-2)x2+2(a-2)x-4≤0对一切x∈R恒成立,则a的取值范围是(  )
A.(-∞,2]B.[-2,2]C.(-2,2]D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等边三角形ABC的边长为1,BC上的高为AD,沿高AD折成直二面角,则A到BC的距离是(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{14}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=sinx-cosx,x∈[0,+∞).
(1)证明:$sinx-f(x)≥1-\frac{x^2}{2}$;
(2)证明:当a≥1时,f(x)≤eax-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|x2+x-2≤0},B={y|y=2x,x∈R},则A∩B等于(  )
A.B.[1,+∞)C.(0,2]D.(0,1]

查看答案和解析>>

同步练习册答案