精英家教网 > 高中数学 > 题目详情
8.已知非零向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow b}|=2|{\overrightarrow a}|$,且$\overrightarrow a$与$\overrightarrow b$的夹角为60°,则“m=1”是“$(\overrightarrow a-m\overrightarrow b)⊥\overrightarrow a$”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分也不必要条件

分析 先根据向量的数量积和向量的垂直求出m的值,再根据充要条件的条件判断即可.

解答 解:非零向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow b}|=2|{\overrightarrow a}|$,且$\overrightarrow a$与$\overrightarrow b$的夹角为60°,
由$(\overrightarrow a-m\overrightarrow b)⊥\overrightarrow a$,
∴($\overrightarrow{a}$-m$\overrightarrow{b}$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}$-m$\overrightarrow{a}$•$\overrightarrow{b}$=${\overrightarrow{a}}^{2}$-m•2$\overrightarrow{a}$2•cos60°=0,
解得m=1,
∴“m=1”是“$(\overrightarrow a-m\overrightarrow b)⊥\overrightarrow a$”的充要条件,
故选:B

点评 本题考查了向量的数量积和充要条件的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x2-4x+3,g(x)=m(x-1)+2(m>0),若存在x1∈[0,3],使得对任意的x2∈[0,3],都有f(x1)=g(x2),则实数m的取值范围是(  )
A.$({0,\frac{1}{2}}]$B.(0,3]C.$[{\frac{1}{2},3}]$D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在一个封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,AC=10,AA1=3,则球的体积的最大值为(  )
A.$\frac{32π}{3}$B.C.D.$\frac{9π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:方程$\frac{x^2}{2-t}+\frac{y^2}{2+t}=1$所表示的曲线为焦点在x轴上的椭圆;命题q:实数t满足不等式t2-(a+2)t+2a<0.
(1)若命题p为真,求实数t的取值范围;
(2)若“命题p为真”是“命题q为真”的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=a(x-1)-lnx(a∈R),g(x)=ex-x-1.
(1)求函数g(x)的单调区间;
(2)若对任意x∈[1,+∞),存在x0∈R,使得f(x)≥g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6},则A∪(∁UB)=(  )
A.{2,5}B.{2,5,7,8}C.{2,3,5,6,7,8}D.{1,2,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是某几何体的三视图,则该几何体的体积为(  )
A.6B.9C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校一块空地的轮廓线如图所示,曲线段OM是以O为顶点,ON为对称轴且开口向右的抛物线的一段,已知ON=4(单位:百米),MN=4.现计划在该区域内围出一块矩形地块ABNC作为学生活动区域,其余阴影部分进行绿化建设,其中A在曲线段OM上,C在MN上,B在ON上.
(Ⅰ)建立适当的坐标系,求曲线段OM所在的抛物线的方程;
(Ⅱ)为降低绿化成本,试确定A的位置,使绿化建设的面积取到最小值,并求出该最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=4x.
(1)过抛物线C上的点P向x轴作垂线PQ,垂足为Q,求PQ中点R的轨迹D的方程;
(2)过抛物线C的焦点作倾斜角为45°的直线l,l与轨迹D交于A,B两点,求|AB|的值.

查看答案和解析>>

同步练习册答案