精英家教网 > 高中数学 > 题目详情
11.在△ABC中,已知A=45°,C=30°,c=10cm.
( I)求a(结果保留根号);
( II)求△ABC的面积(结果保留根号).

分析 ( I)直接利用正弦定理即可求出a的值.
(II)利用三角形内角和可知B=105°,根据S=$\frac{1}{2}$acsinB可得△ABC的面积.

解答 解:( I)∵A=45°,C=30°,c=10cm.
由正弦定理:$\frac{a}{sinA}=\frac{c}{sinC}$,可得:$\frac{a}{\frac{\sqrt{2}}{2}}=\frac{10}{\frac{1}{2}}$,
∴a=10$\sqrt{2}$.
(II))∵A=45°,C=30°,
∴B=105°.
那么△ABC的面积S=$\frac{1}{2}$acsinB=$\frac{1}{2}×10\sqrt{2}×10×sin105°$=50$\sqrt{2}×\frac{\sqrt{6}+\sqrt{2}}{4}$=25($\sqrt{3}+1$)

点评 本题考查了正弦定理以及三角形内角和定理的运用,△ABC的面积的计算.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.从0,1,2,3,4,5这6个数字中任意取4个数字组成一个没有重复数字的四位数,这个数不能被3整除的概率为(  )
A.$\frac{17}{25}$B.$\frac{14}{25}$C.$\frac{12}{25}$D.$\frac{8}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.角A是△ABC的一个内角,且$sin({A+\frac{π}{4}})=\frac{3}{5}$,则$tan({A+\frac{π}{4}})$=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横,纵坐标分别对应数列{an}(n∈N*)的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则a2013+a2014+a2015等于(  )
A.1005B.1006C.1007D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算(用数字作答):${C}_{3}^{2}$+${C}_{4}^{2}$+${C}_{5}^{2}$+…+${C}_{19}^{2}$=1139.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.从1到9的正整数中任意抽取两个数相加,所得的和为奇数的不同情形种数是20.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.二项式(x3+$\frac{1}{{x}^{4}}$)n的展开式中,第二、三、四项二项式系数成等差数列,则展开式中的常数项是(  )
A.21B.35C.56D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若P(2,-1)为圆x2+y2-2x-24=0的弦AB的中点,则直线AB的方程是(  )
A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.2x-y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.存在θ∈R,使得关于θ的不等式cos2θ>2mcosθ-4m+7成立,则实数m的取值范围为(1,+∞).

查看答案和解析>>

同步练习册答案