精英家教网 > 高中数学 > 题目详情
20.若P(2,-1)为圆x2+y2-2x-24=0的弦AB的中点,则直线AB的方程是(  )
A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.2x-y-5=0

分析 求出圆的圆心和半径,由弦的性质可得CP⊥AB,求出CP的斜率,可得AB的斜率,由点斜式求得直线AB的方程.

解答 解:圆x2+y2-2x-24=0即(x-1)2+y2=25,表示以C(1,0)为圆心,以5为半径的圆.
由于P(2,-1)为圆x2+y2-2x-24=0的弦AB的中点,故有CP⊥AB,
CP的斜率为 $\frac{0+1}{1-2}$=-1,故AB的斜率为1,由点斜式求得直线AB的方程为y+1=x-2,
即 x-y-3=0,
故选:A.

点评 本题主要考查直线和圆的位置关系,两直线垂直的性质,用点斜式求直线方程,求出AB的斜率为1,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设P为椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上的一点,F1,F2是该椭圆的两个焦点,若|PF1|:|PF2|=2:1,则△PF1F2的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,已知A=45°,C=30°,c=10cm.
( I)求a(结果保留根号);
( II)求△ABC的面积(结果保留根号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f'(x),且有f(x)+xf'(x)<0,则不等式(x+2017)f(x+2017)+2f(-2)>0的解集为(  )
A.(-∞,-2015)B.(-2015,0)C.(-∞,-2019)D.(-2019,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,由两条曲线y=-x2,4y=-x2及直线y=-1所围成的图形的面积为(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{3}{\begin{array}{l}8\end{array}}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆锥曲线mx2+y2=1的一个焦点与抛物线x2=8y的焦点重合,则此圆锥曲线的离心率为(  )
A.2B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数$z=\frac{1+3i}{1-i}$,则共轭复数$\overline z$所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的前n项和Sn满足Sn=2an-1,则|a1-18|+|a2-18|+…|a10-18|=961.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果x-1+yi与i-3x是共轭复数(x,y是实数),则x+y=(  )
A.-1B.1C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

同步练习册答案