分析 由椭圆的定义即可求得|PF1|=4,|PF2|=2,丨F1F2丨=2$\sqrt{5}$,则∠F1PF2=90°,根据三角形的面积公式即可求得△PF1F2的面积.
解答 解:由椭圆的方程可知:|PF1|+|PF2|=2a=6,b=2,c=$\sqrt{5}$,
由|PF1|:|PF2|=2:1,
则|PF1|=4,|PF2|=2,丨F1F2丨=2$\sqrt{5}$,
由|PF1|2+|PF2|2=丨F1F2丨2,
∴∠F1PF2=90°,
∴△PF1F2的面积$\frac{1}{2}$×|PF1||PF2|=4,
∴△PF1F2的面积4,
故答案为4.
点评 本题考查椭圆的定义,椭圆的焦点三角形的面积公式,考查计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{17}{25}$ | B. | $\frac{14}{25}$ | C. | $\frac{12}{25}$ | D. | $\frac{8}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{{3-2\sqrt{3}}}{2},0]$ | B. | $(\frac{{3-2\sqrt{3}}}{2},3]$ | C. | $(\frac{{3-2\sqrt{3}}}{2},\frac{{3+2\sqrt{3}}}{2}]$ | D. | $(\frac{{3-2\sqrt{3}}}{2},\frac{{3+2\sqrt{3}}}{2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1005 | B. | 1006 | C. | 1007 | D. | 2015 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x-y-3=0 | B. | 2x+y-3=0 | C. | x+y-1=0 | D. | 2x-y-5=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com