精英家教网 > 高中数学 > 题目详情
4.设全集U=R,集合A={x|(x+6)(3-x)≤0},B={x|log2(x+2)<4}.
(Ⅰ)求A∩(∁UB);
(Ⅱ)已知C={x|2a<x<a+1},若B∩C=C,求实数a的取值范围.

分析 (Ⅰ)解二次不等式,求出A,解对数不等式求出B,进而可求A∩(∁UB);
(Ⅱ)由C={x|2a<x<a+1},B∩C=C,分C=∅和C≠∅两种情况,讨论满足条件的a的取值范围,最后综合讨论结果,可得答案.

解答 解:(Ⅰ)∵集合A={x|(x+6)(3-x)≤0}={x|x≤-6,或x≥3},
B={x|log2(x+2)<4}={x|-2<x<14}.
∴∁UB={x|x≤-2,或x≥14},
∴A∩(∁UB)={x|x≤-6,或x≥14},
(Ⅱ)∵C={x|2a<x<a+1},B∩C=C,
当2a≥a+1,即a≥1时,C=∅,满足条件,
当2a<a+1,即a<1时,若B∩C=C,则C⊆B,
则-2≤2a<a+1≤14,
解得:-1≤a<1,
综上所述,a≥-1.

点评 本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{a-ax+{x}^{2}}$
(Ⅰ)若f(x)的定义域为R,试求a的取值范围.
(Ⅱ)若f(x)在∈[2,3]上有意义,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知A是抛物线y2=4x上的一点,以点A和点B(2,0)为直径的圆C交直线x=1于M,N两点.直线l与AB平行,且直线l交抛物线于P,Q两点.
(Ⅰ)求线段MN的长;
(Ⅱ)若$\overrightarrow{OP}$$•\overrightarrow{OQ}$=-3,且直线PQ与圆C相交所得弦长与|MN|相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.关于x的方程lg(tx)=2lg(x+2)有且仅有一个实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A、B、C所对的边分别是a、b、c,若$\frac{a}{sinA}$=$\frac{b}{cosB}$=$\frac{c}{cosC}$则△ABC的形状是(  )
A.等边三角形B.等腰直角三角形
C.直角非等腰三角形D.等腰非直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知${({x^{\frac{2}{3}}}+3{x^2})^n}$的展开式中,各项系数和比它的二项式系数和大992.
(1)求展开式中二项式系数最大的项;
(2)求${S_n}=C_n^1+C_n^2•2+C_n^3•{2^2}+…+C_n^n•{2^{n-1}}$值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(Ⅰ)定义在R上的奇函数f(x),当x≥0时,f(x)=-x2+2x.另一个函数y=g(x)的定义域为[a,b],值域为[$\frac{1}{b},\frac{1}{a}$],其中a≠b,a,b≠0.在x∈[a,b]上,g(x)=f(x).求a,b.
(Ⅱ)b,c∈R,二次函数f(x)=x2+bx+c在(0,1)上与x轴有两个不同的交点,求c2+(1+b)c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,向量$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AC}=\overrightarrow{b}$,$\overrightarrow{CD}=\overrightarrow{c}$,则向量$\overrightarrow{BD}$可以表示为(  )
A.$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$B.$\overrightarrow{b}$+$\overrightarrow{a}$-$\overrightarrow{c}$C.$\overrightarrow{a}$-$\overrightarrow{b}$+$\overrightarrow{c}$D.$\overrightarrow{b}$-$\overrightarrow{a}$+$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)=x5+ax3+bx-8且f(-2)=0,那么f(2)等于-16.

查看答案和解析>>

同步练习册答案