分析 (1)最小的正实数M=1,即使得对任意的n∈N*,恒有0<an≤1.利用数学归纳法即可证明.
(2)先证明右边:由(1)可得:0<an≤1.通过放缩:an+1=$\frac{1}{2}$an+$\frac{n}{{2}^{n+1}}$${a}_{n}^{2}$=an$(\frac{1}{2}+\frac{n}{{2}^{n+1}}{a}_{n})$≤an($\frac{1}{2}+\frac{n}{{2}^{n+1}}$)$\frac{3}{4}$an,(2n≤2n).可得:an≤$(\frac{3}{4})^{n-1}$.证明左边:利用数学归纳法证明即可得出.
解答 (1)解:最小的正实数M=1,即使得对任意的n∈N*,恒有0<an≤1.
下面利用数学归纳法证明:①当n=1时,a1=1成立;
②假设n=k(k∈N*)时,对任意的k∈N*,恒有0<ak≤1.
则n=k+1时,易知k<2k,
∴0<ak+1=$\frac{1}{2}{a}_{k}$+$\frac{k}{{2}^{k+1}}$${a}_{k}^{2}$<$\frac{1}{2}+\frac{k}{{2}^{k+1}}{a}_{k}$≤$\frac{1}{2}+\frac{k}{{2}^{k+1}}$<$\frac{1}{2}+\frac{1}{2}$=1,
因此当n=k+1时假设成立,
综上可得:最小的正实数M=1,使得对任意的n∈N*,恒有0<an≤M.
(2)证明:先证明右边:由(1)可得:0<an≤1.
∴an+1=$\frac{1}{2}$an+$\frac{n}{{2}^{n+1}}$${a}_{n}^{2}$=an$(\frac{1}{2}+\frac{n}{{2}^{n+1}}{a}_{n})$≤an($\frac{1}{2}+\frac{n}{{2}^{n+1}}{a}_{n}$)≤an($\frac{1}{2}+\frac{n}{{2}^{n+1}}$)≤an($\frac{1}{2}+\frac{1}{4}$)=$\frac{3}{4}$an,(2n≤2n).
∴an≤$\frac{3}{4}{a}_{n-1}$$≤(\frac{3}{4})^{2}{a}_{n-2}$≤$(\frac{3}{4})^{n-1}{a}_{1}$=$(\frac{3}{4})^{n-1}$,因此右边成立.
证明左边:下面利用数学归纳法证明:①当n=1时,a1=1=$\frac{18}{5×{2}^{1}+8}$,成立;
②假设n=k(k∈N*)时,对任意的k∈N*,恒有ak≥$\frac{18}{5×{2}^{k}+8}$.
则n=k+1时,要证明:ak+1≥$\frac{18}{5×{2}^{k+1}+8}$,
又ak+1=$\frac{1}{2}{a}_{k}$+$\frac{k}{{2}^{k+1}}$${a}_{k}^{2}$,
∴只要证明:$\frac{1}{2}{a}_{k}$+$\frac{k}{{2}^{k+1}}$${a}_{k}^{2}$≥$\frac{18}{5×{2}^{k+1}+8}$,
化为:k(5×2k+4)${a}_{n}^{2}$+2kak-18•2k≥0,
解出:ak≥$\frac{\sqrt{{2}^{k}({2}^{k}+360k×{2}^{k}+288k)}-{2}^{k}}{2k(5×{2}^{k}+4)}$≥$\frac{18k+{2}^{k}-{2}^{k}}{2k(5×{2}^{k}+4)}$=$\frac{18}{5×{2}^{k+1}+8}$.
因此当n=k+1时也成立,
综上①②可得:左边成立.
因此:对任意的n∈N*,恒有$\frac{18}{5•{2}^{n}+8}$≤an≤${(\frac{3}{4})}^{n-1}$.
点评 本题考查了不等式的性质、“放缩法”、数学归纳法、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{7}-\frac{y^2}{3}=1$ | B. | $\frac{y^2}{3}-\frac{x^3}{7}=1$ | C. | $\frac{x^2}{3}-{y^2}=1$ | D. | ${y^2}-\frac{x^2}{3}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com