1£®°´ÕÕÈçÏµĹæÂɹ¹ÔìÊý±í£º
µÚÒ»ÐÐÊÇ£º2£»
µÚ¶þÐÐÊÇ£º2+1£¬2+3£º¼´3£¬5£»
µÚÈýÐÐÊÇ£º3+1£¬3+3£¬5+1£¬5+3£¬¼´£º4£¬6£¬6£¬8£¬
¡­
£¨¼´´ÓµÚ¶þÐÐÆð½«ÉÏÒ»ÐеÄÊýµÄÿһÏî¸÷¼Ó1д³ö£¬ÔÙ¸÷ÏîÔÙ¼Ó3д³ö£©£¬ÈôµÚnÐÐËùÓеÄÏîµÄºÍΪan£»
2
3 5
4 6 6 8
5 7 7 9 7 9 9 11
¡­
£¨1£©Çóa3£¬a4£¬a5£»
£¨2£©ÊÔд³öan+1ÓëanµÄµÝÍÆ¹ØÏµ£¬²¢¾Ý´ËÇó³öÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÉèSn=$\frac{{a}_{3}}{{a}_{1}{a}_{2}}$+$\frac{{a}_{4}}{{a}_{2}{a}_{3}}$+¡­+$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$£¨n¡ÊN*£©£¬ÇóSnºÍ$\underset{lim}{n¡ú¡Þ}$SnµÄÖµ£®

·ÖÎö £¨1£©Ö±½Ó´úÈë¼ÆËã¼´¿É£»
£¨2£©Í¨¹ý¹Û²ì¿ÉÖªan+1=2an+£¨1+3£©•2n-1£¬½ø¶øÁ½±ßͬʱ³ýÒÔ2n+1£¬ÕûÀí¿ÉµÃÊýÁÐ{$\frac{{a}_{n}}{{2}^{n}}$}ÊÇÊ×Ïî¡¢¹«²î¾ùΪ1µÄµÈ²îÊýÁУ¬¼ÆËã¼´µÃ½áÂÛ£»
£¨3£©Í¨¹ý£¨2£©ÁÑÏî¿ÉÖª$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$=4[$\frac{1}{n•{2}^{n}}$-$\frac{1}{£¨n+1£©•{2}^{n+1}}$]£¬½ø¶ø²¢ÏîÏà¼Ó¼´µÃ½áÂÛ£®

½â´ð ½â£º£¨1£©ÒÀÌâÒ⣬a3=4+6+6+8=24£¬
a4=5+7+7+9+7+9+9+11=64£¬
a5=6+8+8+10+8+10+10+12+8+10+10+12+10+12+12+14=160£»
£¨2£©¡ß´ÓµÚ¶þÐÐÆð½«ÉÏÒ»ÐеÄÊýµÄÿһÏî¸÷¼Ó1д³ö£¬ÔÙ¸÷ÏîÔÙ¼Ó3д³ö£¬
¡àan+1=2an+£¨1+3£©•2n-1£¬¼´an+1=2an+2n+1£¬
Á½±ßͬʱ³ýÒÔ2n+1£¬µÃ£º$\frac{{a}_{n+1}}{{2}^{n+1}}$=$\frac{{a}_{n}}{{2}^{n}}$+1£¬
ÓÖ¡ß$\frac{{a}_{1}}{{2}^{1}}$=1£¬
¡à$\frac{{a}_{n}}{{2}^{n}}$=n£¬¼´an=n•2n£»
£¨3£©ÓÉ£¨2£©¿ÉÖª$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$=$\frac{£¨n+2£©•{2}^{n+2}}{n£¨n+1£©•{2}^{n}•{2}^{n+1}}$=4[$\frac{1}{n•{2}^{n}}$-$\frac{1}{£¨n+1£©•{2}^{n+1}}$]£¬
¡àSn=$\frac{{a}_{3}}{{a}_{1}{a}_{2}}$+$\frac{{a}_{4}}{{a}_{2}{a}_{3}}$+¡­+$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$
=4[$\frac{1}{1•{2}^{1}}$-$\frac{1}{2•{2}^{2}}$+$\frac{1}{2•{2}^{2}}$-$\frac{1}{3•{2}^{3}}$+¡­+$\frac{1}{n•{2}^{n}}$-$\frac{1}{£¨n+1£©•{2}^{n+1}}$]
=4[$\frac{1}{1•{2}^{1}}$-$\frac{1}{£¨n+1£©•{2}^{n+1}}$]
=2-$\frac{1}{£¨n+1£©•{2}^{n-1}}$£¨n¡ÊN*£©£¬
¡à$\underset{lim}{n¡ú¡Þ}$Sn=$\underset{lim}{n¡ú¡Þ}$[2-$\frac{1}{£¨n+1£©•{2}^{n-1}}$]=2£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏǰnÏîºÍ£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²éÁÑÏîÏàÏû·¨£¬¶Ô±í´ïʽµÄÁé»î±äÐÎÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÏȺó2´ÎÅ×ÖÀһö÷»×Ó£¬½«µÃµ½µÄµãÊý·Ö±ð¼ÇΪa£¬b£®
£¨1£©ÇóµãP£¨a£¬b£©ÂäÔÚÕý·½ÐÎÇøÓò¦¸={£¨x£¬y£©|1£¼x£¼5£¬2£¼y£¼6}µÄ¸ÅÂÊ£»
£¨2£©½«a£¬b£¬5µÄÖµ·Ö±ð×÷ΪÈýÌõÏ߶εij¤£¬ÇóÕâÈýÌõÏß¶ÎÄÜΧ³ÉµÈÑüÈý½ÇÐεĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÈýÀâÖùABC-A1B1C1ÖУ¬µ×ÃæABCΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬AB=AC=1£¬BB1=2£¬¡ÏABB1=60¡ã£®
£¨¢ñ£©Ö¤Ã÷£ºAB¡ÍB1C£»
£¨¢ò£©ÈôB1C=2£¬ÇóAC1ÓëÆ½ÃæBCB1Ëù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Sn=n2+2a|n-2|£¨n¡ÊN+£©£¬ÊýÁÐ{an}ΪµÝÔöÊýÁУ¬ÔòʵÊýaµÄȡֵ·¶Î§£¨$-\frac{5}{2}£¬\frac{3}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÊýÁÐ{an}Âú×㣺a1=1£¬an+1=$\frac{1}{2}$an+$\frac{n}{{2}^{n+1}}$${a}_{n}^{2}$£¨n¡ÊN*£©£®
£¨1£©Çó×îСµÄÕýʵÊýM£¬Ê¹µÃ¶ÔÈÎÒâµÄn¡ÊN*£¬ºãÓÐ0£¼an¡ÜM£®
£¨2£©ÇóÖ¤£º¶ÔÈÎÒâµÄn¡ÊN*£¬ºãÓÐ$\frac{18}{5•{2}^{n}+8}$¡Üan¡Ü${£¨\frac{3}{4}£©}^{n-1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×ãa1=1£¬b1=2£¬an+1bn=anbn+2an+4
£¨¢ñ£©Èôbn=2an£¬ÇóÖ¤£ºµ±n¡Ý2ʱ£¬$n+2¡Ü{a_n}¡Ü\frac{3}{2}n+1$£»
£¨¢ò£©Èô${b_{n+1}}=\frac{{{a_n}{b_n}+2{b_n}+4}}{a_n}$£¬Ö¤Ã÷an£¼10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔÚÃ÷³¯³Ì´óλ¡¶Ë㷨ͳ×Ú¡·ÖÐÓÐÕâÑùµÄÒ»Ê׸èÒ¥£º¡°Ô¶¿´Î¡Î¡ËþÆß²ã£¬ºì¹âµãµã±¶¼ÓÔö£¬¹²µÆÈý°Ù°Ëʮһ£¬ÇëÎʼâÍ·¼¸ÕµµÆ¡±£® ÕâÊ×¹ÅÊ«ÃèÊöµÄÕâ¸ö±¦Ëþ¹Å³Æ¸¡ÍÀ£¬±¾Ìâ˵ËüÒ»¹²ÓÐ7²ã£¬Ã¿²ãÐü¹ÒµÄºìµÆÊýÊÇÉÏÒ»²ãµÄ2±¶£¬¹²ÓÐ381ÕµµÆ£¬ÎÊËþ¶¥Óм¸ÕµµÆ£¿ÄãËã³ö¶¥²ãÓУ¨¡¡¡¡£©ÕµµÆ£®
A£®2B£®3C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=a£¬a2=b£¬n¡Ý2ʱ£¬an+1=an-an-1£¬SnΪÆäǰnÏîÖ®ºÍ£¬ÇÒS1949=1978£¬S2013=1960£¬ÔòS2µÄֵΪ-18£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¹ýµãA£¨3£¬1£©µÄÖ±ÏßlÓëÔ²C£ºx2+y2-4y-1=0ÏàÇÐÓÚµãB£¬Ôò$\overrightarrow{CA}•\overrightarrow{CB}$=£¨¡¡¡¡£©
A£®0B£®$\sqrt{5}$C£®5D£®$\frac{{\sqrt{50}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸