精英家教网 > 高中数学 > 题目详情
13.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”. 这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有(  )盏灯.
A.2B.3C.5D.6

分析 由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a的方程,解方程可得.

解答 解:设第七层有a盏灯,由题意知第七层至第一层的灯的盏数
构成一个以a为首项,以2为公比的等比数列,
∴由等比数列的求和公式可得$\frac{a(1-{2}^{7})}{1-2}$=381,解得a=3,
∴顶层有3盏灯,
故选:B.

点评 本题考查等比数列的求和公式,由题意构造等比数列是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列函数中,在区间(0,2)上递增的是(  )
A.y=log0.5(x+1)B.$y={log_2}\sqrt{{x^2}-1}$
C.$y={log_2}\frac{1}{x}$D.$y={log_{\frac{1}{2}}}(5-4x+{x^2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,△ABC中,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,m>0,n>0,那么m+2n的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.按照如下的规律构造数表:
第一行是:2;
第二行是:2+1,2+3:即3,5;
第三行是:3+1,3+3,5+1,5+3,即:4,6,6,8,

(即从第二行起将上一行的数的每一项各加1写出,再各项再加3写出),若第n行所有的项的和为an
2
3 5
4 6 6 8
5 7 7 9 7 9 9 11

(1)求a3,a4,a5
(2)试写出an+1与an的递推关系,并据此求出数列{an}的通项公式;
(3)设Sn=$\frac{{a}_{3}}{{a}_{1}{a}_{2}}$+$\frac{{a}_{4}}{{a}_{2}{a}_{3}}$+…+$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$(n∈N*),求Sn和$\underset{lim}{n→∞}$Sn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.公差不为零的等差数列{an}中,a1,a2,a5成等比数列,且该数列的前10项和为100,数列{bn}的前n项和为Sn,且满足${S_n}=2{b_n}-1,\;\;n∈{N^*}$.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令${c_n}=\frac{{1+{a_n}}}{{4{b_n}}}$,数列{cn}的前n项和为Tn,求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在直三棱柱ABC-A1B1C1中,△ABC是等腰直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点;
(1)求证:AC⊥平面BCC1B1
(2)求异面直线B1D与AC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}满足a1=1,an=$\frac{n{a}_{n-1}}{{a}_{n-1}+2n-2}$(n≥2,n∈N*).
(1)求a2,a3,a4的值;
(2)求数列{an}的通项公式;
(3)设bn=(1-$\frac{1}{{2}^{n}}$)an,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.选择适当的方法解下列三角形:
(1)在△ABC中,b=4,c=13,S△ABC=10,求a;
(2)在△ABC中,a=2$\sqrt{3}$,b=6,A=30°,解此三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数f(x)满足f(x+1)=-f(x),且f(x)=$\left\{\begin{array}{l}{1,-1<x≤0}\\{-1,0<x≤1}\end{array}\right.$,则下列函数值为1的是(  )
A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)

查看答案和解析>>

同步练习册答案