分析 (Ⅰ)通过将bn=2an代入an+1bn=anbn+2an+4化简可知数列{an}递增,当n≥2时放缩可知$1<{a_{n+1}}-{a_n}≤\frac{3}{2}$,利用an=a2+(a3-a2)+(a4-a3)+…+(an-an-1)计算即得结论;
(Ⅱ)通过对an+1bn=anbn+2an+4、${b_{n+1}}=\frac{{{a_n}{b_n}+2{b_n}+4}}{a_n}$变形、进而作差,化简即得结论.
解答 证明:(Ⅰ)将bn=2an代入an+1bn=anbn+2an+4,
可得:${a_{n+1}}={a_n}+\frac{2}{a_n}+1$,
由a1=1知an>0,
∴${a_{n+1}}-{a_n}=\frac{2}{a_n}+1>1$,即数列{an}递增,
故当n≥2时,$1<{a_{n+1}}-{a_n}≤\frac{2}{a_n}+1≤\frac{2}{a_2}+1$,即$1<{a_{n+1}}-{a_n}≤\frac{3}{2}$,
又an=a2+(a3-a2)+(a4-a3)+…+(an-an-1),
所以${a_2}+(n-2)≤{a_n}≤{a_2}+\frac{3}{2}(n-2)$,
即$n+2≤{a_n}≤\frac{3}{2}n+1$;
(Ⅱ)由a1>0,b1>0以及递推式知an>0,bn>0,
又∵$\left\{\begin{array}{l}{a_{n+1}}+2=\frac{{({a_n}+2)({b_n}+2)}}{b_n}\\{b_{n+1}}+2=\frac{{({a_n}+2)({b_n}+2)}}{a_n}\end{array}\right.$,
∴$\left\{\begin{array}{l}\frac{1}{{{a_{n+1}}+2}}=\frac{b_n}{{({a_n}+2)({b_n}+2)}}\\ \frac{1}{{{b_{n+1}}+2}}=\frac{a_n}{{({a_n}+2)({b_n}+2)}}\end{array}\right.$,
从而有$\frac{1}{{{a_{n+1}}+2}}-\frac{1}{{{b_{n+1}}+2}}=\frac{b_n}{{({a_n}+2)({b_n}+2)}}-\frac{a_n}{{({a_n}+2)({b_n}+2)}}=\frac{{({b_n}+2)-({a_n}+2)}}{{({a_n}+2)({b_n}+2)}}$
=$\frac{1}{{{a_n}+2}}-\frac{1}{{{b_n}+2}}=…=\frac{1}{{{a_1}+2}}-\frac{1}{{{b_1}+2}}=\frac{1}{12}$,
所以$\frac{1}{{{a_n}+2}}>\frac{1}{12}$,因此an<10.
点评 本题是一道关于数列递推式的不等式,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com