精英家教网 > 高中数学 > 题目详情
11.复数的$\frac{1+2i}{2-i}$的共轭复数是(  )
A.-iB.iC.2D.1

分析 利用复数的运算法则、共轭复数的定义即可得出.

解答 解:复数的$\frac{1+2i}{2-i}$=$\frac{(1+2i)(2+i)}{(2-i)(2+i)}$=$\frac{5i}{5}$=i的共轭复数是-i.
故选:A.

点评 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在四棱锥P-ABCD中,底面ABCD是菱形,PD⊥平面ABCD,点D1为棱PD的中点,过D1作与平面ABCD平行的平面与棱PA,PB,PC相交于A1,B1,C1,∠BAD=60°.
(1)证明:B1为PB的中点;
(2)若AB=2,且二面角A1-AB-C的大小为60°,AC、BD的交点为O,连接B1O.求三棱锥B1-ABO外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知常数p满足0<p<1,数列{xn}满足x1=p+$\frac{1}{p}$,xn+1=${x}_{n}^{2}$-2.
(1)求x2,x3,x4
(2)猜想{xn}的通项公式,并给出证明
(3)求证:xn+1>xn对n∈N*成立
(4)求证:$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{1}{x}_{2}}$+$\frac{1}{{x}_{1}{x}_{2}{x}_{3}}$+…+$\frac{1}{{x}_{1}{x}_{2}…{x}_{n}}$<p.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设P是△ABC内一点,且$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{CP}$=$\overrightarrow{0}$,$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$,则$\overrightarrow{AD}$+$\overrightarrow{AP}$=(  )
A.$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$B.$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$C.$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$D.$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}和{bn}满足a1=1,b1=2,an+1bn=anbn+2an+4
(Ⅰ)若bn=2an,求证:当n≥2时,$n+2≤{a_n}≤\frac{3}{2}n+1$;
(Ⅱ)若${b_{n+1}}=\frac{{{a_n}{b_n}+2{b_n}+4}}{a_n}$,证明an<10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对于给定的正整数n和正数R,若等差数列a1,a2,a3,…满足a${\;}_{1}^{2}+{a}_{2n+1}^{2}$≤R,则S=a2n+1+a2n+2+a2n+3+…+a4n+1的最大值为$\frac{(2n+1)\sqrt{10R}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.有一个容量为60的样本,数据的分组及各组的频数如下:
[11.5,15.5)2;
[15.5,19.5)4;
[19.5,23.5)5;
[23.5,27.5)16;
[27.5,31.5)1l;
[31.5,35.5)12;
[35.5.39.5)7;
[39.5,43.5)3;
根据样本的频率分布估计,数据落在[27.5,39.5)的概率约是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}是等差数列,若a2014+a2015<0,a2014•a2015<0,且数列{an}的前n项和Sn有最大值,那么Sn取得最小正值时n等于4029.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.记集合A={x|x+2>0},B={y|y=sinx,x∈R},则A∪B=(  )
A.(-2,+∞)B.[-1,1]C.[-1,1]∪[2,+∞)D.(-2,1]

查看答案和解析>>

同步练习册答案