精英家教网 > 高中数学 > 题目详情
19.设P是△ABC内一点,且$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{CP}$=$\overrightarrow{0}$,$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$,则$\overrightarrow{AD}$+$\overrightarrow{AP}$=(  )
A.$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$B.$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$C.$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$D.$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AC}$

分析 根据向量加减运算的几何意义用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{AD},\overrightarrow{AP}$.

解答 解:∵$\overrightarrow{BP}=\overrightarrow{AP}-\overrightarrow{AB}$,$\overrightarrow{CP}=\overrightarrow{AP}-\overrightarrow{AC}$,$\overrightarrow{AP}+\overrightarrow{BP}+\overrightarrow{CP}=\overrightarrow{0}$,
∴3$\overrightarrow{AP}$=$\overrightarrow{AB}+\overrightarrow{AC}$,即$\overrightarrow{AP}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$.
∵$\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}$=$\overrightarrow{AB}+\frac{1}{3}(\overrightarrow{AC}-\overrightarrow{AB})$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}\overrightarrow{AC}$.
∴$\overrightarrow{AD}+\overrightarrow{AP}$=$\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$.
故选:A.

点评 本题考查了平面向量线性运算的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x2+4ax+2在区间(-∞,6)上是减函数,则实数a的取值范围是(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在区间〔-3,3〕上随机选取一个数x,则|x|≤1的概率为(  )
A.$\frac{1}{\begin{array}{l}3\end{array}}$B.$\frac{2}{\begin{array}{l}3\end{array}}$C.$\frac{1}{\begin{array}{l}4\end{array}}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,Ox、Oy是平面内相交成120°的两条数轴,${\overrightarrow e_1}$,${\overrightarrow e_2}$分别是与x轴、y轴正方向同向的单位向量,若向量$\overrightarrow{OP}$=x${\overrightarrow e_1}$+y${\overrightarrow e_2}$,则将有序实数对(x,y)叫做向量$\overrightarrow{OP}$在坐标系xOy中的坐标.若$\overrightarrow{OP}$=(3,2),则|$\overrightarrow{OP}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}、{bn}满足:an+1=an+1,bn+1=bn+$\frac{1}{2}{a}_{n}$,cn=${{a}_{n}}^{2}$-4bn,n∈N*
(1)若a1=1,b1=0,求数列{an}、{bn}的通项公式:
(2)证明:数列{cn}是等差数列:
(3)定义fn(x)=x2+anx+bn,证明:若存在K∈N*,使得ak、bk为整数,且fk(x)有两个整数零点,则必有无穷多个fn(x)有两个整数零点:

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ax2-1的图象在点A(1,f(1))处的切线l与直线8x-y+2=0平行,若数列$\left\{{\frac{1}{f(n)}}\right\}$的前n项和为Sn,则S2015的值为(  )
A.$\frac{4030}{4031}$B.$\frac{2014}{4029}$C.$\frac{2015}{4031}$D.$\frac{4029}{4031}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数的$\frac{1+2i}{2-i}$的共轭复数是(  )
A.-iB.iC.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}满足:a1=2,an+1=$\frac{{a}_{n}}{2}$+$\frac{1}{{a}_{n}}$,n≥1,求该数列的通项an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z=$\frac{2}{1+i}$+2i,则z的共轭复数是(  )
A.-1-iB.1-iC.1+iD.-1+i

查看答案和解析>>

同步练习册答案