14£®ÒÑÖªÊýÁÐ{an}¡¢{bn}Âú×㣺an+1=an+1£¬bn+1=bn+$\frac{1}{2}{a}_{n}$£¬cn=${{a}_{n}}^{2}$-4bn£¬n¡ÊN*£º
£¨1£©Èôa1=1£¬b1=0£¬ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£º
£¨2£©Ö¤Ã÷£ºÊýÁÐ{cn}ÊǵȲîÊýÁУº
£¨3£©¶¨Òåfn£¨x£©=x2+anx+bn£¬Ö¤Ã÷£ºÈô´æÔÚK¡ÊN*£¬Ê¹µÃak¡¢bkΪÕûÊý£¬ÇÒfk£¨x£©ÓÐÁ½¸öÕûÊýÁãµã£¬Ôò±ØÓÐÎÞÇî¶à¸öfn£¨x£©ÓÐÁ½¸öÕûÊýÁãµã£º

·ÖÎö £¨1£©Í¨¹ýan+1=an+1¡¢a1=1¿ÉÖªÊýÁÐ{an}ÊÇÊ×Ïî¡¢¹«²î¾ùΪ1µÄµÈ²îÊýÁУ»Í¨¹ýbn+1-bn=$\frac{1}{2}$n£¬µ±n¡Ý2ʱÀûÓÃbn=£¨bn-bn-1£©+£¨bn-1-bn-2£©+¡­+£¨b2-b1£©+b1¼ÆË㣬½ø¶ø¿ÉµÃ½áÂÛ£»
£¨2£©Í¨¹ý£¨1£©´úÈë¼ÆËã¼´µÃ½áÂÛ£»
£¨3£©Í¨¹ý·ÖÎö¿ÉÖª·½³Ìx2+akx+bk=0ÓÐÁ½¸öÕûÊý¸ù£¬ÀûÓá÷=k£¾0£¬Ö»ÐèÁî$\frac{-{a}_{k}¡À\sqrt{¡÷}}{2}$=$\frac{-k¡À\sqrt{k}}{2}$ΪÕûÊý¼´¿É£®

½â´ð £¨1£©½â£º¡ßan+1=an+1£¬a1=1£¬
¡àÊýÁÐ{an}ÊÇÊ×Ïî¡¢¹«²î¾ùΪ1µÄµÈ²îÊýÁУ¬
¡àan=n£»
ÓÖ¡ßbn+1=bn+$\frac{1}{2}{a}_{n}$£¬
¡àbn+1-bn=$\frac{1}{2}$n£¬
ÓÖ¡ßb1=0£¬
¡àµ±n¡Ý2ʱ£¬bn=£¨bn-bn-1£©+£¨bn-1-bn-2£©+¡­+£¨b2-b1£©+b1
=$\frac{1}{2}$[£¨n-1£©+£¨n-2£©+¡­+1+0]
=$\frac{1}{2}$•$\frac{n£¨n-1£©}{2}$
=$\frac{n£¨n-1£©}{4}$£¬
ÓÖ¡ßµ±n=1ʱÉÏʽ³ÉÁ¢£¬
¡àbn=$\frac{n£¨n-1£©}{4}$£»
£¨2£©Ö¤Ã÷£º¡ßan=n£¬bn=$\frac{n£¨n-1£©}{4}$£¬
¡àcn=${{a}_{n}}^{2}$-4bn=n2-4•$\frac{n£¨n-1£©}{4}$=n£¬
¡àÊýÁÐ{cn}ÊǵȲîÊýÁУ»
£¨3£©Ö¤Ã÷£ºÒÀÌâÒ⣬·½³Ìx2+akx+bk=0ÓÐÁ½¸öÕûÊý¸ù£¬
Ôò¡÷=${{a}_{k}}^{2}$-4bk=k2-4•$\frac{k£¨k-1£©}{4}$=k£¾0£¬ÇÒ$\frac{-{a}_{k}¡À\sqrt{¡÷}}{2}$=$\frac{-k¡À\sqrt{k}}{2}$ΪÕûÊý£¬
ÓÖ¡ßak¡¢bkΪÕûÊý£¬
¡àk=4t£¨t¡ÊN*£©Âú×ãÌâÒ⣬
¡à±ØÓÐÎÞÇî¶à¸öfn£¨x£©ÓÐÁ½¸öÕûÊýÁãµã£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏǰnÏîºÍ£¬¿¼²é²¢ÏîÏàÏû·¨µÄÄæÓ㬿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®´üÖÐ×°×Å·Ö±ðÓÐÊý×Ö1£¬2£¬3£¬4£¬5µÄ5¸öÐÎ×´ÏàͬµÄСÇò£¬´Ó´üÖÐÓзŻصÄÒ»´ÎÈ¡³ö2¸öСÇò£®¼ÇµÚÒ»´ÎÈ¡³öµÄСÇòËù±êÊý×ÖΪx£¬µÚ¶þ´ÎΪy
£¨1£©ÁоٳöËùÓлù±¾Ê¼þ£»
£¨2£©Çóx+yÊÇ3µÄ±¶ÊýµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Ò»ÖÖ¼ÆËãµÄÓÎÏ·£¬¼ÆËã$|\begin{array}{l}{2}&{3}\\{6}&{5}\end{array}|$=-8£¬$|\begin{array}{l}{3}&{2}\\{5}&{1}\end{array}|$=-7£¬$|\begin{array}{l}{4}&{1}\\{4}&{5}\end{array}|$=16£¬ÇëÄã°ïæËãÒ»Ë㣬$|\begin{array}{l}{5}&{3}\\{6}&{5}\end{array}|$=7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª³£ÊýpÂú×ã0£¼p£¼1£¬ÊýÁÐ{xn}Âú×ãx1=p+$\frac{1}{p}$£¬xn+1=${x}_{n}^{2}$-2£®
£¨1£©Çóx2£¬x3£¬x4£»
£¨2£©²ÂÏë{xn}µÄͨÏʽ£¬²¢¸ø³öÖ¤Ã÷
£¨3£©ÇóÖ¤£ºxn+1£¾xn¶Ôn¡ÊN*³ÉÁ¢
£¨4£©ÇóÖ¤£º$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{1}{x}_{2}}$+$\frac{1}{{x}_{1}{x}_{2}{x}_{3}}$+¡­+$\frac{1}{{x}_{1}{x}_{2}¡­{x}_{n}}$£¼p£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Sn=n2+2a|n-2|£¨n¡ÊN+£©£¬ÊýÁÐ{an}ΪµÝÔöÊýÁУ¬ÔòʵÊýaµÄȡֵ·¶Î§£¨$-\frac{5}{2}£¬\frac{3}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÉèPÊÇ¡÷ABCÄÚÒ»µã£¬ÇÒ$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{CP}$=$\overrightarrow{0}$£¬$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$£¬Ôò$\overrightarrow{AD}$+$\overrightarrow{AP}$=£¨¡¡¡¡£©
A£®$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$B£®$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$C£®$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$D£®$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AC}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×ãa1=1£¬b1=2£¬an+1bn=anbn+2an+4
£¨¢ñ£©Èôbn=2an£¬ÇóÖ¤£ºµ±n¡Ý2ʱ£¬$n+2¡Ü{a_n}¡Ü\frac{3}{2}n+1$£»
£¨¢ò£©Èô${b_{n+1}}=\frac{{{a_n}{b_n}+2{b_n}+4}}{a_n}$£¬Ö¤Ã÷an£¼10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÓÐÒ»¸öÈÝÁ¿Îª60µÄÑù±¾£¬Êý¾ÝµÄ·Ö×é¼°¸÷×éµÄƵÊýÈçÏ£º
[11.5£¬15.5£©2£»
[15.5£¬19.5£©4£»
[19.5£¬23.5£©5£»
[23.5£¬27.5£©16£»
[27.5£¬31.5£©1l£»
[31.5£¬35.5£©12£»
[35.5.39.5£©7£»
[39.5£¬43.5£©3£»
¸ù¾ÝÑù±¾µÄƵÂÊ·Ö²¼¹À¼Æ£¬Êý¾ÝÂäÔÚ[27.5£¬39.5£©µÄ¸ÅÂÊÔ¼ÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{1}{3}$C£®$\frac{1}{2}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}2{£¨x+1£©^2}£¬\;a¡Üx£¼k\\{log_2}£¨x+1£©+1£¬\;\;k¡Üx¡Ü1.\end{array}\right.$Èô´æÔÚʵÊýkʹµÃ¸Ãº¯ÊýÖµÓòΪ[0£¬2]£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-2]B£®[-2£¬-1]C£®[-2£¬-$\frac{1}{2}$£©D£®[-2£¬0]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸