精英家教网 > 高中数学 > 题目详情
15.设数列{an}的前项和为Sn,若$\frac{{S}_{n}}{{S}_{2n}}$为常数,则称数列{an}为“精致数列”.已知等差数列{bn}的首项为1,公差不为0,若数列{bn}为“精致数列”,则数列{bn}的通项公式为${b_n}=2n-1,(n∈{N^*})$.

分析 由题意设数列{bn}的公差为d(d≠0),$\frac{{S}_{n}}{{S}_{2n}}$=k,代入等差数列的前n项和与前2n项和,整理后得(4k-1)dn+(2k-1)(2-d)=0,由该式对任意n∈N*都成立,得
$\left\{\begin{array}{l}{d(4k-1)=0}\\{(2k-1)(2-d)=0}\end{array}\right.$,求解方程组得到公差d,则数列{bn}的通项公式可求.

解答 解:设数列{bn}的公差为d(d≠0),$\frac{{S}_{n}}{{S}_{2n}}$=k,
∵b1=1,
∴$n+\frac{1}{2}n(n-1)d=k[2n+\frac{1}{2}2n(2n-1)d]$,
即2+(n-1)d=4k+2k(2n-1)d,
整理得:(4k-1)dn+(2k-1)(2-d)=0,
∵上式对任意n∈N*都成立,
∴$\left\{\begin{array}{l}{d(4k-1)=0}\\{(2k-1)(2-d)=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{d=2}\\{k=\frac{1}{4}}\end{array}\right.$.
∴${b_n}=2n-1,(n∈{N^*})$.
故答案为:${b_n}=2n-1,(n∈{N^*})$.

点评 本题是新定义题,考查了等差数列的前n项和,考查了数列的函数特性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.一种计算的游戏,计算$|\begin{array}{l}{2}&{3}\\{6}&{5}\end{array}|$=-8,$|\begin{array}{l}{3}&{2}\\{5}&{1}\end{array}|$=-7,$|\begin{array}{l}{4}&{1}\\{4}&{5}\end{array}|$=16,请你帮忙算一算,$|\begin{array}{l}{5}&{3}\\{6}&{5}\end{array}|$=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}和{bn}满足a1=1,b1=2,an+1bn=anbn+2an+4
(Ⅰ)若bn=2an,求证:当n≥2时,$n+2≤{a_n}≤\frac{3}{2}n+1$;
(Ⅱ)若${b_{n+1}}=\frac{{{a_n}{b_n}+2{b_n}+4}}{a_n}$,证明an<10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.有一个容量为60的样本,数据的分组及各组的频数如下:
[11.5,15.5)2;
[15.5,19.5)4;
[19.5,23.5)5;
[23.5,27.5)16;
[27.5,31.5)1l;
[31.5,35.5)12;
[35.5.39.5)7;
[39.5,43.5)3;
根据样本的频率分布估计,数据落在[27.5,39.5)的概率约是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}满足a1=a,a2=b,n≥2时,an+1=an-an-1,Sn为其前n项之和,且S1949=1978,S2013=1960,则S2的值为-18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}是等差数列,若a2014+a2015<0,a2014•a2015<0,且数列{an}的前n项和Sn有最大值,那么Sn取得最小正值时n等于4029.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=sin(ωx+$\frac{π}{6}$)-cosωx的图象相邻两个对称中心之间的距离为$\frac{π}{2}$,则f(x)的一个单调增区间为(  )
A.(-$\frac{π}{6}$,$\frac{π}{3}$)B.(-$\frac{π}{3}$,$\frac{π}{6}$)C.($\frac{π}{6}$,$\frac{2π}{3}$)D.($\frac{π}{3}$,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)=\left\{\begin{array}{l}2{(x+1)^2},\;a≤x<k\\{log_2}(x+1)+1,\;\;k≤x≤1.\end{array}\right.$若存在实数k使得该函数值域为[0,2],则实数a的取值范围是(  )
A.(-∞,-2]B.[-2,-1]C.[-2,-$\frac{1}{2}$)D.[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,内角A,B,C对边分别为a,b,c,且c<a,已知$\overrightarrow{CB}$•$\overrightarrow{BA}$=-2,tanB=2$\sqrt{2}$,b=3.
(1)求a和c的值;
(2)求sin(B-C)的值.

查看答案和解析>>

同步练习册答案