分析 (1)由tanB=2$\sqrt{2}$得cosB,由知$\overrightarrow{CB}$•$\overrightarrow{BA}$=-2得accosB=2,解得ac,由余弦定理及a>c,即可解得a,c的值.
(2)由(Ⅰ)可求sinB,由正弦定理可求sinC,cosC,利用两角差的正弦函数公式即可得解.
解答 解:(Ⅰ)∵$\overrightarrow{CB}$•$\overrightarrow{BA}$=-2,
∴$\overrightarrow{BA}•\overrightarrow{BC}$=2,
∴cacosB=2,
∵tanB=2$\sqrt{2}$,
∴cosB=$\frac{1}{\sqrt{1+tanB}}$=$\frac{1}{3}$,
∴ac=2
在△ABC中,由余弦定理得:b2=a2+c2-2accosB,
即a2+c2=13,
∴a=2,c=3,或a=3,c=2,
∵a>c,
∴a=3,c=2.
(2)在△ABC中,sinB=cosB•tanB=$\frac{2\sqrt{2}}{3}$,
由正弦定理得sinC=$\frac{csinB}{b}$=$\frac{2}{3}$•$\frac{2\sqrt{2}}{3}$=$\frac{4\sqrt{2}}{9}$,
∵a=b>c,
∴C为锐角,
∴cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{7}{9}$,
∴sin(B-C)=sinBcosC-cosBsinC=$\frac{2\sqrt{2}}{3}$×$\frac{7}{9}$+$\frac{1}{3}$×$\frac{4\sqrt{2}}{9}$=$\frac{10\sqrt{2}}{27}$
点评 本题主要考查了余弦定理,正弦定理,两角差的正弦函数公式,平面向量数量积的运算,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲校 | 乙校 | 丙校 | |
| 男生 | 97 | 90 | x |
| 女生 | 153 | y | z |
| 8442 | 1753 | 3157 | 2455 | 0688 | 7704 | 7447 | 6721 | 7633 | 5026 | 8392 |
| 6301 | 5316 | 5916 | 9275 | 3862 | 9821 | 5071 | 7512 | 8673 | 5807 | 4439 |
| 1326 | 3321 | 1342 | 7864 | 1607 | 8252 | 0744 | 3815 | 0324 | 4299 | 7931 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$-n | B. | $\frac{1}{2}$-n | C. | $\frac{1}{2}$+n | D. | -$\frac{1}{2}$+n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在平面α内没有直线与直线a垂直 | |
| B. | 在平面α内有且只有一条直线与直线a垂直 | |
| C. | 在平面α内有无数条直线与直线a垂直 | |
| D. | 在平面α内存在两条相交直线与直线a垂直 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com