精英家教网 > 高中数学 > 题目详情
5.在△ABC中,内角A,B,C对边分别为a,b,c,且c<a,已知$\overrightarrow{CB}$•$\overrightarrow{BA}$=-2,tanB=2$\sqrt{2}$,b=3.
(1)求a和c的值;
(2)求sin(B-C)的值.

分析 (1)由tanB=2$\sqrt{2}$得cosB,由知$\overrightarrow{CB}$•$\overrightarrow{BA}$=-2得accosB=2,解得ac,由余弦定理及a>c,即可解得a,c的值.
(2)由(Ⅰ)可求sinB,由正弦定理可求sinC,cosC,利用两角差的正弦函数公式即可得解.

解答 解:(Ⅰ)∵$\overrightarrow{CB}$•$\overrightarrow{BA}$=-2,
∴$\overrightarrow{BA}•\overrightarrow{BC}$=2,
∴cacosB=2,
∵tanB=2$\sqrt{2}$,
∴cosB=$\frac{1}{\sqrt{1+tanB}}$=$\frac{1}{3}$,
∴ac=2
在△ABC中,由余弦定理得:b2=a2+c2-2accosB,
即a2+c2=13,
∴a=2,c=3,或a=3,c=2,
∵a>c,
∴a=3,c=2.
(2)在△ABC中,sinB=cosB•tanB=$\frac{2\sqrt{2}}{3}$,
由正弦定理得sinC=$\frac{csinB}{b}$=$\frac{2}{3}$•$\frac{2\sqrt{2}}{3}$=$\frac{4\sqrt{2}}{9}$,
∵a=b>c,
∴C为锐角,
∴cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{7}{9}$,
∴sin(B-C)=sinBcosC-cosBsinC=$\frac{2\sqrt{2}}{3}$×$\frac{7}{9}$+$\frac{1}{3}$×$\frac{4\sqrt{2}}{9}$=$\frac{10\sqrt{2}}{27}$

点评 本题主要考查了余弦定理,正弦定理,两角差的正弦函数公式,平面向量数量积的运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设数列{an}的前项和为Sn,若$\frac{{S}_{n}}{{S}_{2n}}$为常数,则称数列{an}为“精致数列”.已知等差数列{bn}的首项为1,公差不为0,若数列{bn}为“精致数列”,则数列{bn}的通项公式为${b_n}=2n-1,(n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果实数x,y满足:$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-4≥0}\\{x≤3}\\{\;}\end{array}\right.$,则$\frac{x+y}{x}$的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若数列{an}与{bn}满足bn+1an+bnan+1=(-1)n+1,bn=$\frac{3+(-1)^{n-1}}{2}$,n∈N*,且a1=2,设数列{an}的前n项和为Sn,则S61=527.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某市区甲、乙、丙三所学校的高三文科学生共有800人,其中男、女生人数如表:
甲校乙校丙校
男生9790x
女生153yz
从这三所学校的所有高三文科学生中随机抽取1人,抽到乙校高三文科女生丰润概率为0.2.
(1)求表中x+z的值;
(2)某市四月份模考后,市教研室准备从这三所学校的所有高三文科学生中利用随机数表法抽取100人进行成绩统计分析.先将800人按001,002,…,800进行编号.如果从第8行第7列的数开始向右读,请你依次写出最先检测的4个人的编号:(下面摘取了随机数表中第7行至第9行)
84421753315724550688770474476721763350268392
63015316591692753862982150717512867358074439
13263321134278641607825207443815032442997931
(3)已知x≥145,z≥145,求丙校高三文科生中的男生比女生人数多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设Sn是公差d=-1的等差数列{an}的前n项和,且S1,S2,S4成等比数列,则an=(  )
A.-$\frac{1}{2}$-nB.$\frac{1}{2}$-nC.$\frac{1}{2}$+nD.-$\frac{1}{2}$+n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设直线a与平面α相交但不垂直,则下列说法中正确的是(  )
A.在平面α内没有直线与直线a垂直
B.在平面α内有且只有一条直线与直线a垂直
C.在平面α内有无数条直线与直线a垂直
D.在平面α内存在两条相交直线与直线a垂直

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若实数x,y满足$\left\{\begin{array}{l}{x+y≥1}\\{x+2y≤6}\\{2x-y≤2}\\{\;}\end{array}\right.$,则z=3x+4y的最大值是14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“若x>1,则x>a”是真命题,则实数a的取值范围是(  )
A.a>1B.a<1C.a≥1D.a≤1

查看答案和解析>>

同步练习册答案