分析 bn+1an+bnan+1=(-1)n+1,bn=$\frac{3+(-1)^{n-1}}{2}$,n∈N*,a1=2,可得:a2=-1.n=2k-1(k∈N*)时,2a2k+a2k-1=0.n=2k(k∈N*)时,2a2k+a2k+1=2.
可得a2k+1-a2k=2,a2k+2-a2k=-1,因此数列{an}的奇数项与偶数项分别成等差数列,公差分别为2,-1.即可得出.
解答 解:∵bn+1an+bnan+1=(-1)n+1,bn=$\frac{3+(-1)^{n-1}}{2}$,n∈N*,a1=2,
∴b1=2,b2=1,b2a1+b1a2=0,a2=-1.
n=2k-1(k∈N*)时,2a2k+a2k-1=0.
n=2k(k∈N*)时,2a2k+a2k+1=2.
∴a2k+1-a2k=2,a2k+2-a2k=-1,
∴数列{an}的奇数项与偶数项分别成等差数列,公差分别为2,-1.
∴S61=(a1+a3+…+a61)+(a2+a4+…+a60)
=$31×2+\frac{31×30}{2}×2$+(-1)×30+$\frac{30×29}{2}×$(-1)
=527.
故答案为:527.
点评 本题考查了等差数列的通项公式及其前n项和公式、分类讨论方法、分组求和方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2] | B. | [-2,-1] | C. | [-2,-$\frac{1}{2}$) | D. | [-2,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,+∞) | B. | [-1,1] | C. | [-1,1]∪[2,+∞) | D. | (-2,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com