7£®Èôº¯Êýf£¨x£©=sin£¨¦Øx+$\frac{¦Ð}{6}$£©-cos¦ØxµÄͼÏóÏàÁÚÁ½¸ö¶Ô³ÆÖÐÐÄÖ®¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£¬Ôòf£¨x£©µÄÒ»¸öµ¥µ÷ÔöÇø¼äΪ£¨¡¡¡¡£©
A£®£¨-$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{3}$£©B£®£¨-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{6}$£©C£®£¨$\frac{¦Ð}{6}$£¬$\frac{2¦Ð}{3}$£©D£®£¨$\frac{¦Ð}{3}$£¬$\frac{5¦Ð}{6}$£©

·ÖÎö ¸ù¾ÝÁ½½ÇºÍ²îµÄÕýÏÒ¹«Ê½ÒÔ¼°Èý½Çº¯ÊýµÄ¸¨Öú½Ç¹«Ê½»¯¼òf£¨x£©£¬½áºÏº¯ÊýµÄÐÔÖÊÇó³öº¯ÊýµÄÖÜÆÚºÍ¦Ø£¬½áºÏÈý½Çº¯ÊýµÄµ¥µ÷ÐÔ½øÐÐÇó½â¼´¿É£®

½â´ð ½â£ºf£¨x£©=sin£¨¦Øx+$\frac{¦Ð}{6}$£©-cos¦Øx=$\frac{\sqrt{3}}{2}$sin¦Øx+$\frac{1}{2}$cos¦Øx-cos¦Øx=$\frac{\sqrt{3}}{2}$sin¦Øx-$\frac{1}{2}$cos¦Øx=sin£¨¦Øx-$\frac{¦Ð}{6}$£©£¬
¡ßf£¨x£©µÄͼÏóÏàÁÚÁ½¸ö¶Ô³ÆÖÐÐÄÖ®¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£¬
¡àº¯ÊýµÄÖÜÆÚT=2¡Á$\frac{¦Ð}{2}$=¦Ð£¬¼´$\frac{2¦Ð}{¦Ø}=¦Ð$£¬¡à¦Ø=2£¬
Ôòf£¨x£©=sin£¨2x-$\frac{¦Ð}{6}$£©£¬
ÓÉ2k¦Ð-$\frac{¦Ð}{2}$¡Ü2x-$\frac{¦Ð}{6}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ
½âµÃ£ºx¡Ê$[-\frac{¦Ð}{6}+k¦Ð£¬\frac{¦Ð}{3}+k¦Ð]$£¬k¡ÊZ£¬
¼´º¯ÊýµÄµ¥µ÷µÝÔöÇø¼äΪ$[-\frac{¦Ð}{6}+k¦Ð£¬\frac{¦Ð}{3}+k¦Ð]$£¬k¡ÊZ£¬
µ±k=0ʱ£¬ÔöÇø¼äΪ£¨-$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{3}$£©£¬
¹ÊÑ¡£ºA£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÈý½Çº¯ÊýµÄµ¥µ÷ÐÔµÄÅжϣ¬ÀûÓÃÁ½½ÇºÍ²îµÄÕýÏÒ¹«Ê½½«º¯Êý½øÐл¯¼òÇó³öº¯Êýf£¨x£©µÄ½âÎöʽÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=n£¬{bn}µÄͨÏʽΪbn=2n£¬cnµÄֵΪ{an}µÄǰnÏîÖк¬ÓÐ{bn}ÖÐÔªËØµÄ¸öÊý£¬¼ÇSnΪÊýÁÐ{cn]µÄǰnÏîºÍ£¬ÔòÏÂÁÐ˵·¨ÖÐÕýÈ·µÄΪ¢Ù¢Ú£¨ÌîÉÏËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©£®
¢Ùµ±n=2k£¨k=1£¬2£¬3¡­£©Ê±£¬cn=k£»
¢Úµ±n=2k+1-1£¨k=1£¬2£¬3¡­£©Ê±£¬cn=k£»
¢Ûµ±n=2k+1-1£¨k=1£¬2£¬3¡­£©Ê±£¬Sn=£¨k-1£©•2k+1+2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬AC=BC=AA1=2£¬DΪ²àÀâAA1µÄÖе㣻
£¨1£©ÇóÖ¤£ºAC¡ÍÆ½ÃæBCC1B1£»
£¨2£©ÇóÒìÃæÖ±ÏßB1DÓëACËù³É½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÉèÊýÁÐ{an}µÄǰÏîºÍΪSn£¬Èô$\frac{{S}_{n}}{{S}_{2n}}$Ϊ³£Êý£¬Ôò³ÆÊýÁÐ{an}Ϊ¡°¾«ÖÂÊýÁС±£®ÒÑÖªµÈ²îÊýÁÐ{bn}µÄÊ×ÏîΪ1£¬¹«²î²»Îª0£¬ÈôÊýÁÐ{bn}Ϊ¡°¾«ÖÂÊýÁС±£¬ÔòÊýÁÐ{bn}µÄͨÏʽΪ${b_n}=2n-1£¬£¨n¡Ê{N^*}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ñ¡ÔñÊʵ±µÄ·½·¨½âÏÂÁÐÈý½ÇÐΣº
£¨1£©ÔÚ¡÷ABCÖУ¬b=4£¬c=13£¬S¡÷ABC=10£¬Çóa£»
£¨2£©ÔÚ¡÷ABCÖУ¬a=2$\sqrt{3}$£¬b=6£¬A=30¡ã£¬½â´ËÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®É輯ºÏA={x||x|£¼3}£¬B={x|2x£¾1}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®£¨-3£¬0£©B£®£¨-3£¬3£©C£®£¨0£¬3£©D£®£¨0£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖª¿Õ¼äÏòÁ¿$\overrightarrow{a}$=£¨0£¬1£¬-1£©£¬$\overrightarrow{b}$=£¨1£¬2£¬3£©£¬$\overrightarrow{c}$=3$\overrightarrow{a}$-$\overrightarrow{b}$£¬Ôò¿Õ¼äÏòÁ¿$\overrightarrow{c}$µÄ×ø±êÊÇ£¨-1£¬1£¬-6£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èç¹ûʵÊýx£¬yÂú×㣺$\left\{\begin{array}{l}{2x-y¡Ý0}\\{x+y-4¡Ý0}\\{x¡Ü3}\\{\;}\end{array}\right.$£¬Ôò$\frac{x+y}{x}$µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÉèÖ±ÏßaÓëÆ½Ãæ¦ÁÏཻµ«²»´¹Ö±£¬ÔòÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÔÚÆ½Ãæ¦ÁÄÚûÓÐÖ±ÏßÓëÖ±Ïßa´¹Ö±
B£®ÔÚÆ½Ãæ¦ÁÄÚÓÐÇÒÖ»ÓÐÒ»ÌõÖ±ÏßÓëÖ±Ïßa´¹Ö±
C£®ÔÚÆ½Ãæ¦ÁÄÚÓÐÎÞÊýÌõÖ±ÏßÓëÖ±Ïßa´¹Ö±
D£®ÔÚÆ½Ãæ¦ÁÄÚ´æÔÚÁ½ÌõÏֱཻÏßÓëÖ±Ïßa´¹Ö±

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸