| A. | $\frac{x^2}{7}-\frac{y^2}{3}=1$ | B. | $\frac{y^2}{3}-\frac{x^3}{7}=1$ | C. | $\frac{x^2}{3}-{y^2}=1$ | D. | ${y^2}-\frac{x^2}{3}=1$ |
分析 求得抛物线的焦点F(0,2),可得c=2,求得双曲线的渐近线方程,由点到直线的距离公式可得b,求得a,进而得到双曲线的方程.
解答 解:抛物线$y=\frac{1}{8}{x^2}$,即x2=8y的焦点F(0,2),
即有双曲线的c=2,
双曲线的渐近线方程为y=±$\frac{b}{a}$x,
可得F到渐近线的距离为d=$\frac{bc}{\sqrt{{a}^{2}+{b}^{2}}}$=b=$\sqrt{3}$,
即有a=$\sqrt{{c}^{2}-{b}^{2}}$=$\sqrt{4-3}$=1,
则双曲线的方程为y2-$\frac{{x}^{2}}{3}$=1.
故选:D.
点评 本题考查双曲线的方程的求法,注意运用渐近线方程和点到直线的距离公式,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1或11 | B. | 1 | C. | 11 | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com