精英家教网 > 高中数学 > 题目详情
17.已知定义域为R的函数$f(x)=\frac{{-{2^x}+b}}{{{2^{x+1}}+2}}$是奇函数.
(1)求f(x);
(2)判断函数f(x)的单调性(不必证明);
(3)解不等式f(|x|+1)+f(x)<0.

分析 (1)根据f(x)是R上的奇函数,f(0)=0,求出b的值1即可;
(2)化简f(x),判断f(x)在R上为减函数;
(3)利用f(x)的单调性与奇偶性,化简不等式并求出解集.

解答 解:(1)因为f(x)是R上的奇函数,
所以f(0)=0,即$\frac{-1+b}{2+2}$=0,解得b=1;
从而有$f(x)=\frac{{-{2^x}+1}}{{{2^{x+1}}+2}}$;…(2分)
经检验,符合题意;…(3分)
(2)由(1)知,f(x)=$\frac{{-2}^{x}+1}{{2}^{x+1}+2}$=-$\frac{1}{2}$+$\frac{1}{{2}^{x}+1}$;
由y=2x的单调性可推知f(x)在R上为减函数; …(6分)
(3)因为f(x)在R上为减函数且是奇函数,从而不等式
f(1+|x|)+f(x)<0等价于f(1+|x|)<-f(x),
即f(1+|x|)<f(-x); …(7分)
又因f(x)是R上的减函数,
由上式推得1+|x|>-x,…(8分)
解得x∈R.…(10分)

点评 本题考查了函数的单调性与奇偶性的应用问题,也考查了不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知x∈(0,$\frac{π}{2}$),求函数f(x)=$\frac{1+cos2x+8si{n}^{2}x}{sin2x}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知α∈[$\frac{π}{6}$,$\frac{2}{3}$π],点A在角α的终边上,且|OA|=4sinα,则点A纵坐标的取值范围是(  )
A.[2,2$\sqrt{3}$]B.[2,3]C.[2,4]D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{1}{{9{{sin}^2}x}}+\frac{4}{{9{{cos}^2}x}},x∈({0,\frac{π}{2}})$,且f(x)≥t恒成立.
(1)求实数t的最大值;
(2)当t取最大值时,求不等式|x+t|+|x-2|≥5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥S-ABCD中,所有侧棱长与底面边长均相等,E为SC的中点.求证:
(Ⅰ) SA∥平面BDE;
(Ⅱ) SC⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正三棱柱ABC-A1B1C1中,D是AB中点,E,F分别为A1D,A1C的中点.
(Ⅰ)求证:EF∥平面ABC;
(Ⅱ)求证:EF⊥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD的底面为正方形,PA⊥底面ABCD,PA=AD.E,F分别为底边AB和侧棱PC的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:EF⊥FD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$M:\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$与抛物线$y=\frac{1}{8}{x^2}$有公共焦点F,F到M的一条渐近线的距离为$\sqrt{3}$,则双曲线方程为(  )
A.$\frac{x^2}{7}-\frac{y^2}{3}=1$B.$\frac{y^2}{3}-\frac{x^3}{7}=1$C.$\frac{x^2}{3}-{y^2}=1$D.${y^2}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若MA垂直菱形ABCD所在的平面,那么MC与BD的位置关系是(  )
A.异面B.平行C.垂直相交D.相交但不垂直

查看答案和解析>>

同步练习册答案