精英家教网 > 高中数学 > 题目详情
15.正三棱锥P-ABC的侧面是底边长为a,顶角为30°的等腰三角形.过点A作这个三棱锥的截面AEF,点E、F分别在棱PB、PC上.
(1)如图,作出平面AEF与平面ABC的交线;
(2)△AEF周长的最小值是否存在?若存在,求出其最小值,并指出此时直线BC与平面AEF的位置关系;若不存在,请说明理由.

分析 (1)延长FE,CB,设FE∩BC=D,则AD即为所求直线;
(2)作出三棱锥的侧面展开图,则AA′为最短距离,利用余弦定理求出PA,则AA′=$\sqrt{2}PA$.

解答 解:(1)延长FE,CB,设FE∩BC=D
连结AD,则直线AD为平面AEF与平面ABC的交线.
(2)作三棱锥P-ABC的侧面展开图,
连结AA′,则△AEF的周长最小值为AA′.

由题意可知PA=PB,AB=a,∠APB=30°,
由余弦定理得:cos30°=$\frac{2P{A}^{2}-{a}^{2}}{2P{A}^{2}}$=$\frac{\sqrt{3}}{2}$,解得PA=$\sqrt{2+\sqrt{3}}$a.
∴AA′=$\sqrt{2}PA$=$\sqrt{4+2\sqrt{3}}$a=($\sqrt{3}+1$)a.
此时,EF∥BC,故BC∥平面AEF.

点评 本题考查了空间直线与平面的位置关系,多面体表面的最短距离问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{1}{{9{{sin}^2}x}}+\frac{4}{{9{{cos}^2}x}},x∈({0,\frac{π}{2}})$,且f(x)≥t恒成立.
(1)求实数t的最大值;
(2)当t取最大值时,求不等式|x+t|+|x-2|≥5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$M:\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$与抛物线$y=\frac{1}{8}{x^2}$有公共焦点F,F到M的一条渐近线的距离为$\sqrt{3}$,则双曲线方程为(  )
A.$\frac{x^2}{7}-\frac{y^2}{3}=1$B.$\frac{y^2}{3}-\frac{x^3}{7}=1$C.$\frac{x^2}{3}-{y^2}=1$D.${y^2}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,在区间(0,2)上递增的是(  )
A.y=log0.5(x+1)B.$y={log_2}\sqrt{{x^2}-1}$
C.$y={log_2}\frac{1}{x}$D.$y={log_{\frac{1}{2}}}(5-4x+{x^2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示的几何体中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=$\frac{{\sqrt{2}}}{2}AB$,M是AB的中点.
(1)求证:CM⊥EM;
(2)求MC与平面EAC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为(  )
A.1B.$\frac{4}{3}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若MA垂直菱形ABCD所在的平面,那么MC与BD的位置关系是(  )
A.异面B.平行C.垂直相交D.相交但不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,△ABC中,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,m>0,n>0,那么m+2n的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}满足a1=1,an=$\frac{n{a}_{n-1}}{{a}_{n-1}+2n-2}$(n≥2,n∈N*).
(1)求a2,a3,a4的值;
(2)求数列{an}的通项公式;
(3)设bn=(1-$\frac{1}{{2}^{n}}$)an,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案