精英家教网 > 高中数学 > 题目详情
4.已知等差数列{an}的前三项为a-1,4,2a,记前n项和为Sn
(1)若Sk=30,求a和k的值;
(2)设bn=$\frac{S_n}{n}$,求b1+b2+b3+…bn的值.

分析 (1)利用等差数列的通项公式及其前n项和公式即可得出.
(2)利用等差数列的通项公式及其前n项和公式即可得出.

解答 解:(1)由已知得a1=a-1,a2=4,a3=2a,
又a1+a3=2a2,∴(a-1)+2a=8,即a=3.
∴a1=2,公差d=a2-a1=2.
由Sk=ka1+$\frac{k(k-1)}{2}$d,得2k+$\frac{k(k-1)}{2}$×2=30,
即k2+k-30=0,解得k=5或k=-6(舍去).
∴a=3,k=5.
(2)由Sn=na1+$\frac{n(n-1)}{2}$d,得Sn=2n+$\frac{n(n-1)}{2}$×2=n2+n.
∴bn=$\frac{Sn}{n}$=n+1.∴{bn}是等差数列.
∴${b_1}+{b_2}+{b_3}+…{b_n}=2+3+4+…+(n+1)=\frac{n(n+3)}{2}$
∴${b_3}+{b_7}+{b_{11}}+…+{b_{4n=1}}=\frac{{{n^2}+3n}}{2}$.

点评 本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列命题正确的个数是(  )
①对于两个分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大;
②在相关关系中,若用y1=c1e${\;}^{{c}_{2}x}$拟合时的相关指数为R12,用y2=bx+a拟合时的相关指数为R22,且R12>R22,则y1的拟合效果好;
③利用计算机产生0~1之间的均匀随机数a,则事件“3a-1>0”发生的概率为$\frac{2}{3}$;
④“x>-1”是“$\frac{1}{x}$<-1”的充分不必要条件.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{3m}$+$\frac{{y}^{2}}{m}$=1(m>0)的长轴长为2$\sqrt{6}$,O为坐标原点.
(Ⅰ)求椭圆C的方程和离心率;
(Ⅱ)设动直线l与y轴相交于点B,点A(3,0)关于直线l的对称点P在椭圆C上,求|OB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知|$\overrightarrow a$|=6,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,且$(\overrightarrow a$+2$\overrightarrow b$)•($\overrightarrow a$-3$\overrightarrow b$)=-72,|$\overrightarrow b$|为(  )
A.4B.5C.6D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α∈($-\frac{π}{4}$,0),β∈($\frac{π}{2}$,π),cos(α+β)=-$\frac{4}{5}$,cos(β-$\frac{π}{4}$)=$\frac{5}{13}$,则cos(α+$\frac{5π}{4}$)=-$\frac{16}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.圆(x+2)2+(y-1)2=5关于原点P(0,0)对称的圆的方程为(  )
A.(x+1)2+(y-2)2=5B.(x-2)2+(y-1)2=5C.(x-1)2+(y+2)2=5D.(x-2)2+(y+1)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知π<α<$\frac{3π}{2}$且sin($\frac{3π}{2}$+α)=$\frac{4}{5}$,则tan$\frac{α}{2}$等于(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.与⊙C1:x2+(y+1)2=25内切且与⊙C2:x2+(y-2)2=1外切的动圆圆心M的轨迹方程是(  )
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0)B.$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{5}$=1(x≠0)C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(x≠3)D.$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{5}$=1(y≠3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某校在一次期末考试中,全校学生的数学成绩都介于60分到140分之间(满分150分),为了估计该校学生的数学考试情况,从该校2000名学生的数学成绩中随机抽取50名学生的数学成绩,将统计结果按如下方式分成八组:第一组[60,70),第二组[70,80),…,第八组[130,140].如图是按照上述分组得到的频率分布直方图的一部分.估计该校2000名学生这次考试的数学成绩的平均分为97.

查看答案和解析>>

同步练习册答案