精英家教网 > 高中数学 > 题目详情
9.圆(x+2)2+(y-1)2=5关于原点P(0,0)对称的圆的方程为(  )
A.(x+1)2+(y-2)2=5B.(x-2)2+(y-1)2=5C.(x-1)2+(y+2)2=5D.(x-2)2+(y+1)2=5

分析 利用对称性求得要求的圆的圆心坐标和半径的值.从而求得要求的圆的方程.

解答 解:圆(x+2)2+(y-1)2=5的圆心(-2,1)关于原点P(0,0)对称的圆的圆心为(2,-1),
故圆(x+2)2+(y-1)2=5关于原点P(0,0)对称的圆的方程为 (x-2)2+(y+1)2=5,
故选:D.

点评 本题主要考查求圆的标准方程的方法,求出要求的圆的圆心坐标和半径的值,是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若复数z=$\frac{a+i}{2i}$(a∈R,i为虚数单位)的实部与虚部相等,则z的模等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C:x2=2py(p>0)的焦点为F,直线2x-y+2=0交抛物线C于A、B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.
(Ⅰ)D是抛物线C上的动点,点E(-1,3),若直线AB过焦点F,求|DF|+|DE|的最小值;
(Ⅱ)是否存在实数p,使|2$\overrightarrow{QA}$+$\overrightarrow{QB}$|=|2$\overrightarrow{QA}$-$\overrightarrow{QB}$|?若存在,求出p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[-$\frac{π}{6}$,$\frac{π}{4}$],记f(x)=$\frac{3}{2}$|$\overrightarrow{a}$+$\overrightarrow{b}$|-$\overrightarrow{a}$•$\overrightarrow{b}$,则f(x)的最小值为(  )
A.2B.$\frac{17}{8}$C.$\frac{{3\sqrt{3}-1}}{2}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的前三项为a-1,4,2a,记前n项和为Sn
(1)若Sk=30,求a和k的值;
(2)设bn=$\frac{S_n}{n}$,求b1+b2+b3+…bn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(cosθ,sinθ)且$\overrightarrow a$⊥$\overrightarrow b$,则tanθ=(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设a为实数,给出命题p:函数f(x)=(a-$\frac{3}{2}$)x是R上的减函数,命题q:关于x的不等式($\frac{1}{2}$)|x-1|≥a的解集为∅.
(1)若p为真命题,求a的取值范围;
(2)若q为真命题,求a的取值范围;
(3)若“p且q”为假命题,“p或q”为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,F为C的右焦点,A(0,-2),直线FA的斜率为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求C的方程;
(Ⅱ)设E(x0,y0)是C上一点,从坐标原点O向圆E:(x-x02+(y-y02=3作两条切线,分别与C交于P,Q两点,直线OP,OQ的斜率分别是k1,k2,求证:
(i)k1•k2=-$\frac{1}{3}$;
(ii)|OP|2+|OQ|2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知曲线f(x)=ex-$\frac{1}{e^x}$与直线y=kx有且仅有一个公共点,则实数k的最大值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案