精英家教网 > 高中数学 > 题目详情
1.设a为实数,给出命题p:函数f(x)=(a-$\frac{3}{2}$)x是R上的减函数,命题q:关于x的不等式($\frac{1}{2}$)|x-1|≥a的解集为∅.
(1)若p为真命题,求a的取值范围;
(2)若q为真命题,求a的取值范围;
(3)若“p且q”为假命题,“p或q”为真命题,求a的取值范围.

分析 (1),(2)根据指数函数的性质求出a的范围即可;(3)通过讨论p,q的真假,求出a的范围即可.

解答 解:(1)命题p:“函数f(x)=(a-$\frac{3}{2}$)x是R上的减函数”为真命题,
得0<a-$\frac{3}{2}$<1,∴$\frac{3}{2}$<a<$\frac{5}{2}$;
(2)由q为真命题,则由0<$(\frac{1}{2})$|x-1|≤1,得a>1;
(3)∵p且q为假,p或q为真,∴p、q中一真一假,
若p真q假,则a不存在;
若p假q真,则1<a≤$\frac{3}{2}$或a≥$\frac{5}{2}$;
综上,a的取值范围为:1<a≤$\frac{3}{2}$或a≥$\frac{5}{2}$.

点评 本题考查了指数函数的性质,考查复合命题的判断,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,A,B两点为喷泉,圆心O为AB的中点,其中OA=OB=a米,半径OC=10米,市民可位于水池边缘任意一点C处观赏.
(1)若当∠OBC=$\frac{2π}{3}$时,sin∠BCO=$\frac{1}{3}$,求此时a的值;
(2)设y=CA2+CB2,且CA2+CB2≤232.
(i)试将y表示为a的函数,并求出a的取值范围;
(ii)若同时要求市民在水池边缘任意一点C处观赏喷泉时,观赏角度∠ACB的最大值不小于$\frac{π}{6}$,试求A,B两处喷泉间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知|$\overrightarrow a$|=6,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,且$(\overrightarrow a$+2$\overrightarrow b$)•($\overrightarrow a$-3$\overrightarrow b$)=-72,|$\overrightarrow b$|为(  )
A.4B.5C.6D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.圆(x+2)2+(y-1)2=5关于原点P(0,0)对称的圆的方程为(  )
A.(x+1)2+(y-2)2=5B.(x-2)2+(y-1)2=5C.(x-1)2+(y+2)2=5D.(x-2)2+(y+1)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知π<α<$\frac{3π}{2}$且sin($\frac{3π}{2}$+α)=$\frac{4}{5}$,则tan$\frac{α}{2}$等于(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设等差数列{an}的前n项和为Sn,且满足S2015>0,S2016<0,对任意正整数n,都有|an|>|ak|,则的值为(  )
A.1007B.1008C.1009D.1010

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.与⊙C1:x2+(y+1)2=25内切且与⊙C2:x2+(y-2)2=1外切的动圆圆心M的轨迹方程是(  )
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0)B.$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{5}$=1(x≠0)C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(x≠3)D.$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{5}$=1(y≠3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=1,an+1=2an+(-1)n(n∈N+).
(1)若bn=a2n-1-$\frac{1}{3}$,求证:数列{bn}是等比数列并求其通项公式;
(2)求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=2x-aln x,且f(x)在x=1处的切线与直线x+y+1=0垂直,则a的值为1.

查看答案和解析>>

同步练习册答案