精英家教网 > 高中数学 > 题目详情
分别是定义在上的奇函数和偶函数,当时, ,且,则不等式的解集是(    )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0, 3)
C.(-∞,- 3)∪(3,+∞)D.(-∞,- 3)∪(0, 3)
D            

试题分析:因为,
即[f(x)g(x)]'>0,故f(x)g(x)在x>0时递增,
又∵f(x),g(x)分别是定义R上的奇函数和偶函数,
∴f(x)g(x)为奇函数,图象关于原点对称,f(x)g(x)在x<0时也是增函数.
∵f(3)g(3)=0,∴f(-3)g(-3)=0
所以f(x)g(x)<0的解集为(-∞,- 3)∪(0, 3)。
点评:小综合题,在某区间,函数的导数非负,函数为增函数,函数的导数非正,函数为减函数。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(为非零常数).
(Ⅰ)当时,求函数的最小值; 
(Ⅱ)若恒成立,求的值;
(Ⅲ)对于增区间内的三个实数(其中),
证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 .
(Ⅰ)当时,求在点处的切线方程;
(Ⅱ)若函数在区间上为单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,若在区间上的最小值为-2,求实数的取值范围;
(3)若对任意,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在上的奇函数,且,当时,有恒成立,则不等式的解集是  (   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=(1+x)2-2ln (1+x).
(1)求函数f(x)的单调区间;
(2)若关于x的方程f(x)=x2xa在[0,2]上恰有两个相异实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)若对内的一切实数,不等式恒成立,求实数的取值范围;
(2)当时,求最大的正整数,使得对是自然对数的底数)内的任意个实数都有成立;
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,若,则(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则           .

查看答案和解析>>

同步练习册答案