精英家教网 > 高中数学 > 题目详情
是定义在上的奇函数,且,当时,有恒成立,则不等式的解集是  (   )
A.B.
C.D.
D

试题分析:即,,所以,函数在(0,+∞)内单调递减.
因为f(2)=0,所以,在(0,2)内恒有f(x)>0,在(2,+∞)内恒有f(x)<0;
又因为f(x)是定义在R上的奇函数,
所以,在(-∞,-2)内恒有f(x)>0,在(-2,0)内恒有f(x)<0.
不等式x2f(x)>0的解集,即不等式f(x)>0的解集.
所以答案为(-∞,-2)∪(0,2).
故选D.
点评:典型题,本题综合性较强,注意到已知中导数,易于联想应用导数研究函数的单调性。本题利用奇函数与单调性的关系,确定不等式的解集。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

以函数为导数的函数图象过点(9,1),则函数____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若处取得极值,求的极大值;
(2)若在区间的图像在图像的上方(没有公共点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的单调递增区间;
(2)若处的切线与直线垂直,求证:对任意,都有
(3)若,对于任意,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(1)若对一切恒成立,求的取值范围;
(2)在函数的图像上取定两点,记直线 的斜率为,证明:存在,使成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,曲线在点处切线的倾斜角的取值范围为,则点到曲线对称轴距离的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是定义在上的奇函数和偶函数,当时, ,且,则不等式的解集是(    )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0, 3)
C.(-∞,- 3)∪(3,+∞)D.(-∞,- 3)∪(0, 3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若定义在R上的函数的导函数是,则函数的单调递减区间是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若的极值点,求实数的值;
(2)当时,方程有实根,求实数的最大值。

查看答案和解析>>

同步练习册答案