精英家教网 > 高中数学 > 题目详情
已知函数,其中.
(1)若对一切恒成立,求的取值范围;
(2)在函数的图像上取定两点,记直线 的斜率为,证明:存在,使成立.
(1)
(2)由题意可得


试题分析:(1),令
单调递减;当时,单调递增
∴当时, 有最小值
于是对于一切,恒成立,当且仅当    ①
,则
时,取最大值1,当且仅当时,①式成立
综上所述的取值的集合为
(2)由题意可得




单调递减;当时,单调递增。故当时,
,又
所以
所以存在,使
点评:典型题,在给定区间,导数非负,函数为增函数,导数非正,函数为减函数。求函数的极值问题,基本步骤是“求导数、求驻点、研究单调性、求极值”。“恒成立问题”往往通过构造函数,研究函数的最值,使问题得到解答。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(I)证明当 
(II)若不等式取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的导数为实数,.
(Ⅰ)若在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的条件下,求经过点且与曲线相切的直线的方程;
(Ⅲ)设函数,试判断函数的极值点个数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 .
(Ⅰ)当时,求在点处的切线方程;
(Ⅱ)若函数在区间上为单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的图像在处的切线方程;
(Ⅱ)设实数,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,若在区间上的最小值为-2,求实数的取值范围;
(3)若对任意,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在上的奇函数,且,当时,有恒成立,则不等式的解集是  (   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=(1+x)2-2ln (1+x).
(1)求函数f(x)的单调区间;
(2)若关于x的方程f(x)=x2xa在[0,2]上恰有两个相异实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,g(-2)=0且 >0,则 不等式g (x)f(x) <0的解集是(  )
A.(-2, 0)∪(2,+ ∞)B.(-2, 0)∪(0,2)
C.(-∞, -2)∪(2,+ ∞)D.(-∞, -2)∪(0,2)

查看答案和解析>>

同步练习册答案