精英家教网 > 高中数学 > 题目详情
已知函数 .
(Ⅰ)当时,求在点处的切线方程;
(Ⅱ)若函数在区间上为单调函数,求的取值范围.
(1)
(2)当在[1,]上是单调函数

试题分析:解(I)时  
 
        
切线方程  
                 4分
(II)    
在[1,e]上单调函数在[1,2]上
       
 
对称轴   
    
     或

由上得出当
在[1,]上是单调函数                  12分
点评:主要是考查了导数在研究函数中的运用,属于中档题,对于单调性的增减,等价于导数恒大于等于零或者小于等于零,是解题的关键。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ) 若函数处的切线方程为,求实数的值.
(Ⅱ)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的导数等于          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


的单调区间
 两点连线的斜率为,问是否存在常数,且,当时有,当时有;若存在,求出,并证明之,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的单调递增区间;
(2)若处的切线与直线垂直,求证:对任意,都有
(3)若,对于任意,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知的导函数.
(Ⅰ)若,求的值;
(Ⅱ)若图象与图象关于直线对称,△ABC的三个内角A、B、C所对的边长分别为,角A为的初相,,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(1)若对一切恒成立,求的取值范围;
(2)在函数的图像上取定两点,记直线 的斜率为,证明:存在,使成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是定义在上的奇函数和偶函数,当时, ,且,则不等式的解集是(    )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0, 3)
C.(-∞,- 3)∪(3,+∞)D.(-∞,- 3)∪(0, 3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,函数的图象在点P处的切线方程是,则             

查看答案和解析>>

同步练习册答案