精英家教网 > 高中数学 > 题目详情
20.数列{an}是以d(d≠0)为公差的等差数列,a1=2,且a2,a4,a8成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an•2n(n∈N*),求数列{bn}的前n项和Tn

分析 (Ⅰ)由题意可知:a2,a4,a8成等比数列,即(2+3d)2=(2+d)(2+7d),解得:d=2,由等差数列的通项公式即可求得求数列{an}的通项公式;
(Ⅱ)由(Ⅰ)可知:bn=an•2n=2n•2n,利用“错位相减法”即可求得数列{bn}的前n项和Tn

解答 解:(Ⅰ)由a2,a4,a8成等比数列,
∴(2+3d)2=(2+d)(2+7d),整理得:d2-2d=0,
∵d=2,d=0(舍去),
∴an=2+2(n-1)=2n,
数列{an}的通项公式an=2n;
(Ⅱ)由(Ⅰ)可知:bn=an•2n=2n•2n
数列{bn}的前n项和Tn,${{T}_n}={b_1}+{b_2}+{b_3}+…+{b_n}=2×2+4×{2^2}+6×{2^3}+…+2n×{2^n}$,①
∴$2{{T}_n}=2×{2^2}+4×{2^3}+6×{2^4}+…+2n×{2^{n+1}}$,②
②-①:${{T}_n}=-2×2-2×{2^2}-2×{2^3}-…-2×{2^n}+2n×{2^{n+1}}$,
=-2(2+22+23+…+2n)+n×2n+2
=$-2×\frac{{2(1-{2^n})}}{1-2}+n×{2^{n+2}}=4+(n-1){2^{n+2}}$
∴${T_n}=4+(n-1){2^{n+2}}$,
数列{bn}的前n项和Tn,${T_n}=4+(n-1){2^{n+2}}$.

点评 本题考查等差数列通项公式的求法,等比数列的性质,考查利用“错位相减法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.(1)若x>-1,求y=$\frac{{{x^2}+7x+10}}{x+1}$的最小值;
(2)若a,b,c都是正数,且a+b+c=1,求证(1-a)(1-b)(1-c)≥8abc.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={1,2},B={2,4},则A∪B=(  )
A.{2}B.{1,2}C.{1,2,4}D.{1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.410°角的终边落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(sinx,$\sqrt{3}$),$\overrightarrow{b}$=(2cosx,$\sqrt{3}$).设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,
(1)求f(x)的最大值
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.方程的解集为{x|x2-3x+2=0},用列举法表示为{1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设f(x)为偶函数,在[0,+∞)是单调函数,则满足f(2x)=f($\frac{x+1}{x+4}$)的所有x之和为(  )
A.8B.9C.-8D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1有相同的焦点,且离心率为$\frac{\sqrt{5}}{5}$的椭圆标准方程为$\frac{x^2}{25}+\frac{y^2}{20}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=1,an+1=3an+1
(1)证明{an+$\frac{1}{2}$}是等比数列,并求{an}的通项公式
(2)若bn=(2n-1)(2an+1),求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案