精英家教网 > 高中数学 > 题目详情
2.下列函数中,①f(x)=$\sqrt{x}$②f(x)=$\frac{1}{x}$③f(x)=ex④f(x)=sinx既是奇函数又存在零点的是④.

分析 利用奇函数的定义及f(x)=0在其定义域内是否有解,逐一判定即可.

解答 解,对于①,f(x)=$\sqrt{x}$其定义域不关于原点对称,故不符合题意;
对于②f(x)=$\frac{1}{x}$,函数图象与横轴无交点,故无零点,不符合题意;
对于③,f(x)=ex,是指数函数,不符合题意;
对于④,f(x)=sinx,满足f(-x)=-f(x),其图象与横轴有交点,符合题意;
故答案为:④

点评 本题考查了函数的奇偶性判定,函数零点问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知复数z1=1+3i,z2=3+i(i为虚数单位).在复平面内,z1-z2对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某工厂制造一批无盖长方体容器,已知每个容器的容积都是9立方米,底面都是一边长为2米,另一边长为x米的长方形,如果制造底面的材料费用为a元/平方米,制造侧面的材料费用为b元/平方米,其中0<$\frac{b}{a}$<1,设计时材料的厚度忽略不计.
(1)试将制造每个容器的成本y(单位:元)表示成底面边长x(单位:米)的函数;
(2)若要求底面边长x满足1≤x≤2(单位:米),则如何设计容器的尺寸,使其成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设某总体是由编号为01,02,…19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列各式的运算结果为纯虚数的是(  )
A.i(1-i)2B.i2(1+i)C.(1-i)2D.i(1+i)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,a2=3,S4=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=($\sqrt{2}$)${\;}^{1+{a}_{n}}$an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线$\frac{x^2}{a^2}$-y2=1(a>0)的一条渐近线方程为$\sqrt{3}$x+y=0,则该双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.阅读下边的程序框图,运行相应的程序,输出的结果为(  )
A.-2B.$\frac{1}{2}$C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=-x2017-x+sinx,若?θ∈(0,$\frac{π}{2}$),f(cos2θ+3msinθ)+f(-3m-2)>0恒成立,则实数m的取值范围是(  )
A.[-$\frac{1}{3}$,+∞)B.(-∞,$-\frac{1}{3}$]C.(-∞,$\frac{1}{3}$]D.[$\frac{1}{3}$,+∞)

查看答案和解析>>

同步练习册答案