精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=-x2017-x+sinx,若?θ∈(0,$\frac{π}{2}$),f(cos2θ+3msinθ)+f(-3m-2)>0恒成立,则实数m的取值范围是(  )
A.[-$\frac{1}{3}$,+∞)B.(-∞,$-\frac{1}{3}$]C.(-∞,$\frac{1}{3}$]D.[$\frac{1}{3}$,+∞)

分析 确定函数f(x)在(-∞,+∞)上为减函数,化抽象不等式为具体不等式,分离参数,利用斜率,即可求出实数m的取值范围.

解答 解:函数f(x)为奇函数且f′(x)=-2017x2016-1+cosx≤0,
所以函数f(x)在(-∞,+∞)上为减函数,
故f(cos2θ+3msinθ)+f(-3m-2)>0⇒3m(1-sinθ)>-1-sin2θ,
当θ∈(0,$\frac{π}{2}$)时,3m>$\frac{{sin}^{2}θ+1}{sinθ-1}$,而 $\frac{{sin}^{2}θ+1}{sinθ-1}$可以视为(sinθ,sin2θ),(1,-1)两点的直线斜率,
而(sinθ,sin2θ)在曲线y=x2,x∈(0,1),可知 $\frac{{sin}^{2}θ+1}{sinθ-1}$<-1,
故3m≥-1⇒m≥-$\frac{1}{3}$.
故选:A.

点评 本题考查函数的图象及其恒成立问题、数形结合思想的应用,考查学生分析转化问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.下列函数中,①f(x)=$\sqrt{x}$②f(x)=$\frac{1}{x}$③f(x)=ex④f(x)=sinx既是奇函数又存在零点的是④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某一算法程序框图如图所不,则输出的S的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)分成5组,制成如图所示频率分布直方图.
(I)求图中x的值;
(II)已知各组内的男生数与女生数的比均为2:l,若在满意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|$\frac{x+3}{x+1}$≤0},B={-2,-1,0,1},则A∩B的子集个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|1<x<4},B={y|y=2-x,x∈A},集合$C=\left\{{x|y=ln\frac{2-x}{x+1}}\right\}$,则集合B∩C=(  )
A.{x|-1<x<1}B.{x|-1≤x≤1}C.{x|-1<x<2}D.{x|-1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数$f(x)=sinωx+sin(ωx-\frac{π}{2})$.
(1)若$ω=\frac{1}{2}$,求f(x)的最大值及相应的x的取值范围;
(2)若$x=\frac{π}{8}$是f(x)的一个零点,且0<ω<10,求ω的值和f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足sin2A+sin2B=sin2C-sinAsinB.
(Ⅰ)求角C;
(Ⅱ)若$c=2\sqrt{6}$,△ABC的中线CD=2,求△ABC面积S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=(cosωx,sinωx),$\overrightarrow{b}$=(cosωx,$\sqrt{3}$cosωx),其中0<ω<2,函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-$\frac{1}{2}$,其中图象的一条对称轴为x=$\frac{π}{6}$.
(1)求函数f(x)的表达式及单调递增区间;
(2)将函数y=f(x)的图象向左平移$\frac{2π}{3}$个单位,再将所得图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)的对称中心.

查看答案和解析>>

同步练习册答案