精英家教网 > 高中数学 > 题目详情
17.已知集合A={x|1<x<4},B={y|y=2-x,x∈A},集合$C=\left\{{x|y=ln\frac{2-x}{x+1}}\right\}$,则集合B∩C=(  )
A.{x|-1<x<1}B.{x|-1≤x≤1}C.{x|-1<x<2}D.{x|-1<x≤2}

分析 先分别求出集合B和C,由此利用交集的定义能求出B∩C.

解答 解:∵集合A={x|1<x<4},B={y|y=2-x,x∈A}={x|-2<x<1},
集合$C=\left\{{x|y=ln\frac{2-x}{x+1}}\right\}$={x|-1<x<2},
集合B∩C={x|-1<x<1}.
故选:A.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,a2=3,S4=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=($\sqrt{2}$)${\;}^{1+{a}_{n}}$an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a,b,c均为实数,且a<b<0,则下列不等式成立的是(  )
A.a+c<b+cB.ac<bcC.a2<b2D.$\sqrt{-a}<\sqrt{-b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={1,2,3,5,7},B={x|(x-2)(x-5)≤0},则A∩B=(  )
A.{1,2,3}B.{2,3,5}C.{2,3,4,5}D.{1,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=-x2017-x+sinx,若?θ∈(0,$\frac{π}{2}$),f(cos2θ+3msinθ)+f(-3m-2)>0恒成立,则实数m的取值范围是(  )
A.[-$\frac{1}{3}$,+∞)B.(-∞,$-\frac{1}{3}$]C.(-∞,$\frac{1}{3}$]D.[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在(x+y+z)8的展开式中,所有形如x2yazb(a,b∈N)的项的系数之和是1792.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z满足z2=-4,则|$\frac{5}{1+z}$|=(  )
A.$\sqrt{3}$B.3C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等比数列{an}满足a1=4,$a{\;}_2{a_6}={a_4}-\frac{1}{4}$,则a2=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设O,A,B为平面上三点,且点P在直线AB上,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,则m+n=(  )
A.0B.-1C.1D.不能确定

查看答案和解析>>

同步练习册答案