精英家教网 > 高中数学 > 题目详情
5.设集合A={1,2,3,5,7},B={x|(x-2)(x-5)≤0},则A∩B=(  )
A.{1,2,3}B.{2,3,5}C.{2,3,4,5}D.{1,7}

分析 先分别求出集合A和B,由此能求出A∩B.

解答 解:∵集合A={1,2,3,5,7},
B={x|(x-2)(x-5)≤0}={x|2≤x≤5},
∴A∩B={2,3,5}.
故选:B.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区--龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)
年龄频数频率
[0,10)100.155
[10,20)
[20,30)250.251213
[30,40)200.21010
[40,50)100.164
[50,60)100.137
[60,70)50.0514
[70,80)30.0312
[80,90)20.0202
合计1001.004555
(1)完成表格一中的空位①-④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
 50岁以上50岁以下合计
男生   
女生   
合计   
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某中学为了解高一年级学生身体发育情况,对全校1400名高一年级学生按性别进行分层抽样检查,测得一组样本的身高(单位:cm)频数分布表如表1、表2.
表1:男生身高频数分布表
 身高(cm)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)
 频数2511453
表2:女生身高频数分布表
 身高(cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)
 频数28151221
(I)估计该校高一女生的人数:
(II)估计该校学生身高在[165,180)的概率;
(III)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X表示身高在[165,180)的学生人数,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$y=3(sin2xcos\frac{π}{6}-cos2xsin\frac{π}{6})$.
(1)求该函数的最小正周期;
(2)求该函数的单调递减区间;
(3)用“五点法”作出该函数在长度为一个周期的闭区间上的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)分成5组,制成如图所示频率分布直方图.
(I)求图中x的值;
(II)已知各组内的男生数与女生数的比均为2:l,若在满意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b,c分别是△ABC的内角A,B.C所对的边,点M为△ABC的重心.若a$\overrightarrow{MA}$+b$\overrightarrow{MB}$+$\frac{\sqrt{3}}{3}$c$\overrightarrow{MC}$=0,则C=(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|1<x<4},B={y|y=2-x,x∈A},集合$C=\left\{{x|y=ln\frac{2-x}{x+1}}\right\}$,则集合B∩C=(  )
A.{x|-1<x<1}B.{x|-1≤x≤1}C.{x|-1<x<2}D.{x|-1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}的前n项和为Sn,且S3=1,S4=-3,an+3=2an(n∈N*),则S2017=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过点(1,-3)且垂直于于直线x-2y+3=0的直线方程为(  )
A.x-2y-7=0B.2x+y+1=0C.x-2y+7=0D.2x+y-1=0

查看答案和解析>>

同步练习册答案