精英家教网 > 高中数学 > 题目详情
13.已知函数$y=3(sin2xcos\frac{π}{6}-cos2xsin\frac{π}{6})$.
(1)求该函数的最小正周期;
(2)求该函数的单调递减区间;
(3)用“五点法”作出该函数在长度为一个周期的闭区间上的简图.

分析 (1)由已知利用两角差的正弦函数公式可得y=3sin(2x-$\frac{π}{6}$),利用周期公式即可得解.
(2)令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,解得:kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,k∈Z,可得函数的单调递减区间.
(3)根据五点法作图的方法先取值,然后描点即可得到图象.

解答 解:(1)∵$y=3(sin2xcos\frac{π}{6}-cos2xsin\frac{π}{6})$=3sin(2x-$\frac{π}{6}$),
∴函数的最小正周期T=$\frac{2π}{2}$=π.
(2)∵令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,解得:kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,k∈Z,
∴函数的单调递减区间为:[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z,
(3)列表:

x$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$$\frac{13π}{12}$
2x-$\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$
y030-30
描点、连线如图所示:

点评 本题主要考查三角函数的图象的作法,考查了正弦函数的单调性,利用五点法是解决三角函数图象的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若关于x的不等式x2+mx+n<0的解集为{x|1<x<2},则m+n=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$短轴的一个端点到其一个焦点的距离是(  )
A.5B.4C.3D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{b-c}{a}=\frac{sinA-sinC}{sinB+sinC}$.
(I)求B;
(II)若a+c=5,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a,b,c均为实数,且a<b<0,则下列不等式成立的是(  )
A.a+c<b+cB.ac<bcC.a2<b2D.$\sqrt{-a}<\sqrt{-b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.
(I)求数列{an}的通项公式;
(Ⅱ)设Sn为数列{an}的前n项和,bn=$\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}+{({-1})^n}{log_2}{a_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={1,2,3,5,7},B={x|(x-2)(x-5)≤0},则A∩B=(  )
A.{1,2,3}B.{2,3,5}C.{2,3,4,5}D.{1,7}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在(x+y+z)8的展开式中,所有形如x2yazb(a,b∈N)的项的系数之和是1792.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某研究所设计了一款智能机器人,为了检验设计方案中机器人动作完成情况,现委托某工厂生产500个机器人模型,并对生产的机器人进行编号:001,002,…,500,采用系统抽样的方法抽取一个容量为50的机器人样本,试验小组对50个机器人样本的动作个数进行分组,频率分布直方图及频率分布表中的部分数据如图所示,请据此回答如下问题:
分组机器人数频率
[50,60)0.08
[60,70)10
[70,80)10
[80,90)
[90,100]6
(1)补全频率分布表,画出频率分布直方图;
(2)若随机抽的第一个号码为003,这500个机器人分别放在A,B,C三个房间,从001到200在A房间,从201到355在B房间,从356到500在C房间,求B房间被抽中的人数是多少?
(3)从动作个数不低于80的机器人中随机选取2个机器人,该2个机器人中动作个数不低于90的机器人记为ξ,求ξ的分布列与数学期望.

查看答案和解析>>

同步练习册答案