精英家教网 > 高中数学 > 题目详情
1.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{b-c}{a}=\frac{sinA-sinC}{sinB+sinC}$.
(I)求B;
(II)若a+c=5,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求b.

分析 (Ⅰ)根据正弦定理以及余弦定理可得,
(Ⅱ)根据三角形的面积公式和余弦定理即可求出.

解答 解:(Ⅰ)在△ABC中,由正弦定理,得$\frac{b-c}{a}$=$\frac{sinA-sinC}{sinB+sinC}$=$\frac{a-c}{b+c}$,
∴b2-c2=a2-ac,
∴a2+c2-b2=ac,
由余弦定理,得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$,
(Ⅱ)∵△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$ac=$\frac{3\sqrt{3}}{2}$,
∴ac=6,
由余弦定理知b2=a2+c2-2accosB=(a+c)2-2ac(1+cosB)=25-2×6×$\frac{3}{2}$=7,
∴b=$\sqrt{7}$.

点评 本题考查了正弦定理余弦定理和三角形的面积公式,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知(1-$\frac{x}{2}$)2n=a0+a1x+a2x2+…+a2nx2n(x∈N*
(1)当n=5时,求系数ai的最大值和最小值;
(2)若a3=-$\frac{1}{2}$,求n的值;
(3)求证:an<$\frac{2^n}{{\sqrt{2n+1}}}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系中,过定点M(0,-$\frac{1}{3}$) 的直线l交椭圆$\frac{x^2}{2}$+y2=1于P,Q两点,则以PQ为直径的圆恒过x轴上方的定点(  )
A.(-1,$\frac{1}{3}$)B.(0,$\frac{1}{2}$)C.(0,1)D.(1,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)左右焦点分别为F1,F2,渐近线为l1,l2,P位于l1在第一象限内的部分,若l2⊥PF1,l2∥PF2,则双曲线的离心率为(  )
A.2B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某中学为了解高一年级学生身体发育情况,对全校1400名高一年级学生按性别进行分层抽样检查,测得一组样本的身高(单位:cm)频数分布表如表1、表2.
表1:男生身高频数分布表
 身高(cm)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)
 频数2511453
表2:女生身高频数分布表
 身高(cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)
 频数28151221
(I)估计该校高一女生的人数:
(II)估计该校学生身高在[165,180)的概率;
(III)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X表示身高在[165,180)的学生人数,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A(3,0),B(2,1),则向量$\overrightarrow{AB}$的单位向量的坐标是(  )
A.(1,-1)B.(-1,1)C.$({-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}})$D.$({\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{2}}}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$y=3(sin2xcos\frac{π}{6}-cos2xsin\frac{π}{6})$.
(1)求该函数的最小正周期;
(2)求该函数的单调递减区间;
(3)用“五点法”作出该函数在长度为一个周期的闭区间上的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b,c分别是△ABC的内角A,B.C所对的边,点M为△ABC的重心.若a$\overrightarrow{MA}$+b$\overrightarrow{MB}$+$\frac{\sqrt{3}}{3}$c$\overrightarrow{MC}$=0,则C=(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.6个人站成一排,若甲、乙两人之间恰有2人,则不同的站法种数为144.

查看答案和解析>>

同步练习册答案