精英家教网 > 高中数学 > 题目详情
3.某一算法程序框图如图所不,则输出的S的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.0

分析 由程序框图的功能是利用循环结构计算并输出变量S的值,
根据y=sin$\frac{nπ}{3}$的周期性,即可求出S的值.

解答 解:由已知程序框图的功能是利用循环结构计算并输出变量
S=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin$\frac{2017π}{3}$的值,
由于y=sin$\frac{nπ}{3}$的周期为6,且同一周期内的6个函数值的累加和为0;
又2016÷6=336,
所以S=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin$\frac{2017π}{3}$=sin$\frac{2017π}{3}$=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$.
故选:A.

点评 本题考查了程序框图的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某工厂制造一批无盖长方体容器,已知每个容器的容积都是9立方米,底面都是一边长为2米,另一边长为x米的长方形,如果制造底面的材料费用为a元/平方米,制造侧面的材料费用为b元/平方米,其中0<$\frac{b}{a}$<1,设计时材料的厚度忽略不计.
(1)试将制造每个容器的成本y(单位:元)表示成底面边长x(单位:米)的函数;
(2)若要求底面边长x满足1≤x≤2(单位:米),则如何设计容器的尺寸,使其成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线$\frac{x^2}{a^2}$-y2=1(a>0)的一条渐近线方程为$\sqrt{3}$x+y=0,则该双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.阅读下边的程序框图,运行相应的程序,输出的结果为(  )
A.-2B.$\frac{1}{2}$C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.我国古代名著《考工记》中有“一尺之棰,日取其半,万世不竭”,如图给出的是计算截取了6天所剩棰长的程序框图,其中判断框内应填入的是(  )
A.i≤16?B.i≤32?C.i≤64?D.i≤128?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a,b,c均为实数,且a<b<0,则下列不等式成立的是(  )
A.a+c<b+cB.ac<bcC.a2<b2D.$\sqrt{-a}<\sqrt{-b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{-tanx,0≤x<\frac{π}{2}}\end{array}\right.$则f(f($\frac{π}{4}$))=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=-x2017-x+sinx,若?θ∈(0,$\frac{π}{2}$),f(cos2θ+3msinθ)+f(-3m-2)>0恒成立,则实数m的取值范围是(  )
A.[-$\frac{1}{3}$,+∞)B.(-∞,$-\frac{1}{3}$]C.(-∞,$\frac{1}{3}$]D.[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点是F,左、右顶点分别是A1,A2,过F做x轴的垂线交双曲线于B,C两点,若A1B⊥A2C,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案