精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{-tanx,0≤x<\frac{π}{2}}\end{array}\right.$则f(f($\frac{π}{4}$))=$\frac{1}{2}$.

分析 先求出f($\frac{π}{4}$)=-tan$\frac{π}{4}$=-1,从而f(f($\frac{π}{4}$))=f(-1),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{-tanx,0≤x<\frac{π}{2}}\end{array}\right.$,
∴f($\frac{π}{4}$)=-tan$\frac{π}{4}$=-1,
f(f($\frac{π}{4}$))=f(-1)=${2}^{-1}=\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和Sn满足Sn=2an-1(n∈N+).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an+3n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.抛物线C:y2=2px(p>0)上的点$M(\frac{p}{2},p)$到其焦点F的距离是2.
(Ⅰ)求C的方程.
(Ⅱ)过点M作圆D:(x-a)2+y2=1的两条切线,分别交C于A,B两点,若直线AB的斜率是-1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某一算法程序框图如图所不,则输出的S的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)分成5组,制成如图所示频率分布直方图.
(I)求图中x的值;
(II)已知各组内的男生数与女生数的比均为2:l,若在满意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|$\frac{x+3}{x+1}$≤0},B={-2,-1,0,1},则A∩B的子集个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数$f(x)=sinωx+sin(ωx-\frac{π}{2})$.
(1)若$ω=\frac{1}{2}$,求f(x)的最大值及相应的x的取值范围;
(2)若$x=\frac{π}{8}$是f(x)的一个零点,且0<ω<10,求ω的值和f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z是一元二次方程x2-2x+2=0的一个根,则|z|的值为(  )
A.1B.$\sqrt{2}$C.0D.2

查看答案和解析>>

同步练习册答案