精英家教网 > 高中数学 > 题目详情
5.已知复数z是一元二次方程x2-2x+2=0的一个根,则|z|的值为(  )
A.1B.$\sqrt{2}$C.0D.2

分析 根据题意,设复数z=a+bi,把z代入x2-2x+2=0中求出a、b的值,再计算|z|.

解答 解:设复数z=a+bi,a、b∈R,i是虚数单位,
由z是x2-2x+2=0的复数根,
∴(a+bi)2-2(a+bi)+2=0,
即(a2-b2-2a+2)+(2ab-2b)i=0,
∴$\left\{\begin{array}{l}{{a}^{2}{-b}^{2}-2a+2=0}\\{2ab-2b=0}\end{array}\right.$,
解得a=1,b=±1,
∴z=1±i,
∴|z|=$\sqrt{2}$.
故选:B.

点评 本题考查了复数的代数运算和模长公式问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{-tanx,0≤x<\frac{π}{2}}\end{array}\right.$则f(f($\frac{π}{4}$))=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=5,$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$(λ,μ∈R),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,$\overrightarrow{c}$⊥($\overrightarrow{b}$-$\overrightarrow{a}$),则$\frac{λ}{μ}$=$\frac{25}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点是F,左、右顶点分别是A1,A2,过F做x轴的垂线交双曲线于B,C两点,若A1B⊥A2C,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.共享单车是指企业与政府合作,在公共服务区等地方提供自行车单车共享服务,现从6辆黄色共享单车和4辆蓝色共享单车中任取4辆进行检查,则至少有两个蓝色共享单车的取法种数是115.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.《九章算术》中有这样一个问题:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”大意为:有个圆柱形木头,埋在墙壁中(如图所示),不知道其大小,用锯沿着面AB锯掉裸露在外面的木头,锯口CD深1寸,锯道AB长度为1尺,问这块圆柱形木料的直径是26寸.(注:1尺=10寸)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知方程(m2-2m-3)x+(2m2+m-1)y+6-2m=0(m∈R).
(1)当m为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;
(2)已知方程表示的直线l在x轴上的截距为-3,求实数m的值;
(3)若方程表示的直线l的倾斜角是45°,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.已知圆C的极坐标方程为ρ=8cosθ+6sinθ,直线l的参数方程为$\left\{\begin{array}{l}{x=-t}\\{y=at+1}\end{array}\right.$(t为参数,a为实常数).
(1)若a=-1,求直线l与圆C的所有公共点;
(2)若直线l与圆C相交,截得弦长为2$\sqrt{7}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a•(\overrightarrow a-2\overrightarrow b)=\frac{3}{2}$,则向量$\overrightarrow a$与$\overrightarrow b$夹角的余弦值为(  )
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$±\frac{1}{8}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案