精英家教网 > 高中数学 > 题目详情
20.共享单车是指企业与政府合作,在公共服务区等地方提供自行车单车共享服务,现从6辆黄色共享单车和4辆蓝色共享单车中任取4辆进行检查,则至少有两个蓝色共享单车的取法种数是115.

分析 根据题意,按取出蓝色共享单车的数目不同,分3种情况讨论:①、取出的4辆都是蓝色的,②、取出的4辆车有3辆蓝色的,③、取出的4辆车有2辆蓝色的,2辆黄色的,求出每种情况的取法数目,由分类计数原理计算可得答案.

解答 解:根据题意,分3种情况讨论:
①、取出的4辆都是蓝色的,有C44=1种取法,
②、取出的4辆车有3辆蓝色的,1辆黄色的,有C43C61=24种取法,
③、取出的4辆车有2辆蓝色的,2辆黄色的,有C42C62=96种取法,
则至少有两个蓝色共享单车的取法有1+24+96=115种;
故答案为:115.

点评 本题考查分类计数原理的应用,注意“至少有两个蓝色共享单车”的条件,据此进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线l1:y=x+a分别与直线l2:y=2(x+1)及曲线C:y=x+lnx交于A,B两点,则A,B两点间距离的最小值为(  )
A.$\frac{3\sqrt{5}}{5}$B.3C.$\frac{6\sqrt{5}}{5}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为120°,且$|{\overrightarrow{AB}}|=1$,$|{\overrightarrow{AC}}|=2$,若$\overrightarrow{AP}=\overrightarrow{AB}+λ\overrightarrow{AC}$,且$\overrightarrow{AP}⊥\overrightarrow{BC}$,则实数λ的值为(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{2}{5}$D.$-\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知三棱锥O-ABC的三条侧棱OA,OB,OC两两垂直,△ABC为等边三角形,M为△ABC内部一点,点P在OM的延长线上,且PA=PB.
(Ⅰ)证明:OA=OB;
(Ⅱ)证明:AB⊥OP;
(Ⅲ)若AP:PO:OC=$\sqrt{5}\;:\sqrt{6}$:1,求二面角P-OA-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z是一元二次方程x2-2x+2=0的一个根,则|z|的值为(  )
A.1B.$\sqrt{2}$C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}为1,3,7,15,31,…,2n-1,数列{bn}满足b1=1,bn=an-an-1,则数列$\left\{{\frac{1}{b_n}}\right\}$的前n-1项和Sn-1为2-22-n(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面内,Rt△ABC中,BA⊥CA,有结论BC2=AC2+AB2,空间中,在四面体V-BCD中,VB,VC,VD两两互相垂直,且侧面的3个三角形面积分别记为S1,S2,S3,底面△BCD的面积记为S,类比平面可得到空间四面体的一个结论是$S_{△BCD}^2=S_{△VBC}^2+S_{△VCD}^2+S_{△VDB}^2$$⇒{S^2}=S_1^2+S_2^2+S_3^2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$sin(α-\frac{π}{3})+sinα=\frac{{2\sqrt{3}}}{5}$,则$cos(α+\frac{π}{3})$等于(  )
A.$-\frac{{\sqrt{21}}}{5}$B.$-\frac{2}{5}$C.$\frac{{\sqrt{21}}}{5}$D.$\frac{2}{5}$

查看答案和解析>>

同步练习册答案