精英家教网 > 高中数学 > 题目详情
5.已知数列{an}的前n项和Sn满足Sn=2an-1(n∈N+).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an+3n,求数列{bn}的前n项和Tn

分析 (I)由Sn=2an-1(n∈N+),可得n≥2时,an=Sn-Sn-1,化为:an=2an-1.n=1时,a1=S1=2a1-1,解得a1,利用等比数列的通项公式即可得出.
(II)bn=an+3n=2n-1+3n,再利用等差数列与等比数列的求和公式即可得出.

解答 解:(I)∵Sn=2an-1(n∈N+),∴n≥2时,an=Sn-Sn-1=2an-1-(2an-1-1),化为:an=2an-1
n=1时,a1=S1=2a1-1,解得a1=1,
∴数列{an}是等比数列,公比为2,首项为1.
∴an=2n-1
(II)bn=an+3n=2n-1+3n,
∴数列{bn}的前n项和Tn=$\frac{{2}^{n}-1}{2-1}$+3×$\frac{n(n+1)}{2}$
=2n-1+$\frac{3{n}^{2}+3n}{2}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.极坐标为(1,π)的点M的直角坐标为(  )
A.(1,0)B.(0,1)C.(-1,0)D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题“若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$”(  )
A.当$\overrightarrow{b}$≠0时成立B.当$\overrightarrow{c}$≠0时成立C.总成立D.当$\overrightarrow{a}$≠0时成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某工厂制造一批无盖长方体容器,已知每个容器的容积都是9立方米,底面都是一边长为2米,另一边长为x米的长方形,如果制造底面的材料费用为a元/平方米,制造侧面的材料费用为b元/平方米,其中0<$\frac{b}{a}$<1,设计时材料的厚度忽略不计.
(1)试将制造每个容器的成本y(单位:元)表示成底面边长x(单位:米)的函数;
(2)若要求底面边长x满足1≤x≤2(单位:米),则如何设计容器的尺寸,使其成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{13}$,则|$\overrightarrow{b}$|=(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设某总体是由编号为01,02,…19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列各式的运算结果为纯虚数的是(  )
A.i(1-i)2B.i2(1+i)C.(1-i)2D.i(1+i)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线$\frac{x^2}{a^2}$-y2=1(a>0)的一条渐近线方程为$\sqrt{3}$x+y=0,则该双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{-tanx,0≤x<\frac{π}{2}}\end{array}\right.$则f(f($\frac{π}{4}$))=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案