精英家教网 > 高中数学 > 题目详情
14.已知双曲线$\frac{x^2}{a^2}$-y2=1(a>0)的一条渐近线方程为$\sqrt{3}$x+y=0,则该双曲线的离心率为2.

分析 根据题意,由双曲线的方程可得其渐近线方程,分析可得$\frac{1}{a}$=$\sqrt{3}$,则a=$\frac{\sqrt{3}}{3}$,由双曲线的几何性质可得c的值,进而由双曲线的离心率公式计算可得答案.

解答 解:根据题意,双曲线的方程为$\frac{x^2}{a^2}$-y2=1(a>0),
其渐近线方程为y=±$\frac{x}{a}$,
若其一条渐近线方程为$\sqrt{3}$x+y=0,即y=-$\sqrt{3}$x,
则有$\frac{1}{a}$=$\sqrt{3}$,则a=$\frac{\sqrt{3}}{3}$,
c=$\sqrt{1+\frac{1}{3}}$=$\frac{2\sqrt{3}}{3}$,
该双曲线的离心率e=$\frac{c}{a}$=2;
故答案为:2.

点评 本题考查双曲线的几何性质,关键是由双曲线的渐近线方程求出a、b的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{AB}$=$\overrightarrow{a}$+5$\overrightarrow{b}$,$\overrightarrow{BC}$=-3$\overrightarrow{a}$+6$\overrightarrow{b}$,$\overrightarrow{CD}$=4$\overrightarrow{a}$-$\overrightarrow{b}$,则(  )
A.A、B、D三点共线B.A、B、C三点共线C.B、C、D三点共线D.A、C、D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和Sn满足Sn=2an-1(n∈N+).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an+3n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列函数中,①f(x)=$\sqrt{x}$②f(x)=$\frac{1}{x}$③f(x)=ex④f(x)=sinx既是奇函数又存在零点的是④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知sin α=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),求tan($\frac{π}{4}-α$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ln(x+1)-ax,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若不等式f(x)≥1-ex对x∈[0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.抛物线C:y2=2px(p>0)上的点$M(\frac{p}{2},p)$到其焦点F的距离是2.
(Ⅰ)求C的方程.
(Ⅱ)过点M作圆D:(x-a)2+y2=1的两条切线,分别交C于A,B两点,若直线AB的斜率是-1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某一算法程序框图如图所不,则输出的S的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数$f(x)=sinωx+sin(ωx-\frac{π}{2})$.
(1)若$ω=\frac{1}{2}$,求f(x)的最大值及相应的x的取值范围;
(2)若$x=\frac{π}{8}$是f(x)的一个零点,且0<ω<10,求ω的值和f(x)的最小正周期.

查看答案和解析>>

同步练习册答案