科目:高中数学 来源: 题型:
如图16,四棱锥P ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.
![]()
图16
(1)求证:AB⊥PD.
(2)若∠BPC=90°,PB=
,PC=2,问AB为何值时,四棱锥P ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知如图G78所示的多面体中,四边形ABCD是菱形,四边形BDEF是矩形,ED⊥平面ABCD,∠BAD=
.
(1)求证:平面BCF∥平面AED;
(2)若BF=BD=a,求四棱锥ABDEF的体积.
![]()
图G78
查看答案和解析>>
科目:高中数学 来源: 题型:
甲、乙两人一起到阿里山参观旅游,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后1小时他们同在一个景点的概率是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
为质检某产品的质量,现抽取5件,测量产品中微量元素x,y的含量(单位:毫克),测量数据如下:
| 编号 | 1 | 2 | 3 | 4 | 5 |
| x | 169 | 178 | 166 | 175 | 180 |
| y | 75 | 80 | 77 | 70 | 81 |
如果产品中的微量元素x,y满足x≥175且y≥75时,该产品为优等品.现从上述5件产品中,随机抽取2件,则抽取的2件产品中优等品数X的分布列为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
抛掷一枚骰子,当它每次落地时,向上一面的点数称为该次抛掷的点数,可随机出现1到6点中的任一个结果.连续抛掷两次,第一次抛掷的点数记为a,第二次抛掷的点数记为b.
(1)求直线ax+by=0与直线x+2y+1=0平行的概率;
(2)求长度依次为a,b,2的三条线段能构成三角形的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com