¾«Ó¢¼Ò½ÌÍø±¾Ìâ°üÀ¨A¡¢B¡¢C¡¢DËÄСÌ⣬ÇëÑ¡¶¨ÆäÖÐÁ½Ì⣬²¢ÔÚÏàÓ¦µÄ´ðÌâÇøÓòÄÚ×÷´ð£®Èô¶à×ö£¬Ôò°´×÷´ðµÄÇ°Á½ÌâÆÀ·Ö£®½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£ºABÊÇÔ²OµÄÖ±¾¶£¬DΪԲOÉÏÒ»µã£¬¹ýD×÷Ô²OµÄÇÐÏß½»ABÑÓ³¤ÏßÓÚµãC£¬ÈôDA=DC£¬ÇóÖ¤£ºAB=2BC£®
B£ºÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµãA£¨0£¬0£©£¬B£¨-2£¬0£©£¬C£¨-2£¬1£©£®ÉèkΪ·ÇÁãʵÊý£¬¾ØÕóM=
k0
01
£¬N=
01
10
£¬µãA¡¢B¡¢CÔÚ¾ØÕóMN¶ÔÓ¦µÄ±ä»»Ïµõ½µã·Ö±ðΪA1¡¢B1¡¢C1£¬¡÷A1B1C1µÄÃæ»ýÊÇ¡÷ABCÃæ»ýµÄ2±¶£¬ÇókµÄÖµ£®
C£ºÔÚ¼«×ø±êϵÖУ¬ÒÑÖªÔ²¦Ñ=2cos¦ÈÓëÖ±Ïß3¦Ñcos¦È+4¦Ñsin¦È+a=0ÏàÇУ¬ÇóʵÊýaµÄÖµ£®
D£ºÉèa¡¢bÊǷǸºÊµÊý£¬ÇóÖ¤£ºa3+b3¡Ý
ab
(a2+b2)
£®
·ÖÎö£ºA¡¢Á¬½ÓOD£¬ÔòOD¡ÍDC£¬ÓÖOA=OD£¬DA=DC£¬ËùÒÔ¡ÏDAO=¡ÏODA=¡ÏDCO£¬ÔÙÖ¤Ã÷OB=BC=OD=OA£¬¼´¿ÉÇó½â£®
B¡¢ÓÉÌâÉèµÃMN=
k0
01
01
10
=
0k
10
£¬¸ù¾Ý¾ØÕóµÄÔËËã·¨Ôò½øÐÐÇó½â£®
C¡¢ÔÚ¼«×ø±êϵÖУ¬ÒÑÖªÔ²¦Ñ=2cos¦ÈÓëÖ±Ïß3¦Ñcos¦È+4¦Ñsin¦È+a=0ÏàÇУ¬ÓÉÌâÒ⽫ԲºÍÖ±ÏßÏÈ»¯ÎªÒ»°ã·½³Ì×ø±ê£¬È»ºóÔÙ¼ÆËãaÖµ£®
D¡¢ÀûÓò»µÈʽµÄÐÔÖʽøÐзÅËõÖ¤Ã÷£¬a3+b3-
ab
(a2+b2)=a2
a
(
a
-
b
)+b2
b
(
b
-
a
)
È»ºóÔÙ½øÐÐÌÖÂÛÇóÖ¤£®
½â´ð£º½â£ºA£º£¨·½·¨Ò»£©Ö¤Ã÷£ºÁ¬½ÓOD£¬Ôò£ºOD¡ÍDC£¬
ÓÖOA=OD£¬DA=DC£¬ËùÒÔ¡ÏDAO=¡ÏODA=¡ÏDCO£¬
¡ÏDOC=¡ÏDAO+¡ÏODA=2¡ÏDCO£¬¾«Ó¢¼Ò½ÌÍø
ËùÒÔ¡ÏDCO=30¡ã£¬¡ÏDOC=60¡ã£¬
ËùÒÔOC=2OD£¬¼´OB=BC=OD=OA£¬ËùÒÔAB=2BC£®

£¨·½·¨¶þ£©Ö¤Ã÷£ºÁ¬½ÓOD¡¢BD£®
ÒòΪABÊÇÔ²OµÄÖ±¾¶£¬ËùÒÔ¡ÏADB=90¡ã£¬AB=2OB£®
ÒòΪDCÊÇÔ²OµÄÇÐÏߣ¬ËùÒÔ¡ÏCDO=90¡ã£®
ÓÖÒòΪDA=DC£¬ËùÒÔ¡ÏDAC=¡ÏDCA£¬
ÓÚÊÇ¡÷ADB¡Õ¡÷CDO£¬´Ó¶øAB=CO£®¾«Ó¢¼Ò½ÌÍø
¼´2OB=OB+BC£¬µÃOB=BC£®
¹ÊAB=2BC£®
BÂú·Ö£¨10·Ö£©£®ÓÉÌâÉèµÃMN=
k0
01
01
10
=
0k
10

ÓÉ
0k
10
0-2-2
001
=
00k
0-2-2
£¬¿ÉÖªA1£¨0£¬0£©¡¢B1£¨0£¬-2£©¡¢C1£¨k£¬-2£©£®
¼ÆËãµÃ¡÷ABCÃæ»ýµÄÃæ»ýÊÇ1£¬¡÷A1B1C1µÄÃæ»ýÊÇ|k|£¬ÔòÓÉÌâÉèÖª£º|k|=2¡Á1=2£®
ËùÒÔkµÄֵΪ2»ò-2£®
C½â£º¦Ñ2=2¦Ñcos¦È£¬Ô²¦Ñ=2cos¦ÈµÄÆÕͨ·½³ÌΪ£ºx2+y2=2x£¬£¨x-1£©2+y2=1£¬
Ö±Ïß3¦Ñcos¦È+4¦Ñsin¦È+a=0µÄÆÕͨ·½³ÌΪ£º3x+4y+a=0£¬
ÓÖÔ²ÓëÖ±ÏßÏàÇУ¬ËùÒÔ
|3•1+4•0+a|
32+42
=1
£¬
½âµÃ£ºa=2£¬»òa=-8£®
D£¨·½·¨Ò»£©Ö¤Ã÷£ºa3+b3-
ab
(a2+b2)=a2
a
(
a
-
b
)+b2
b
(
b
-
a
)

=(
a
-
b
)[(
a
)5-(
b
)5]

=(
a
-
b
)2[(
a
)4+(
a
)3(
b
)+(
a
)2(
b
)2+(
a
)(
b
)3+(
b
)4]

ÒòΪʵÊýa¡¢b¡Ý0£¬(
a
-
b
)2¡Ý0£¬[(
a
)4+(
a
)3(
b
)+(
a
)2(
b
)2+(
a
)(
b
)3+(
b
)4]¡Ý0

ËùÒÔÉÏʽ¡Ý0£®¼´ÓÐa3+b3¡Ý
ab
(a2+b2)
£®
£¨·½·¨¶þ£©Ö¤Ã÷£ºÓÉa¡¢bÊǷǸºÊµÊý£¬×÷²îµÃa3+b3-
ab
(a2+b2)

=a2
a
(
a
-
b
)+b2
b
(
b
-
a
)

=(
a
-
b
)[(
a
)5-(
b
)5]

µ±a¡Ýbʱ£¬
a
¡Ý
b
£¬´Ó¶ø(
a
)5¡Ý(
b
)5
£¬µÃ(
a
-
b
)[(
a
)5-(
b
)5]¡Ý0
£»
µ±a£¼bʱ£¬
a
£¼
b
£¬´Ó¶ø(
a
)5£¼(
b
)5
£¬µÃ(
a
-
b
)[(
a
)5-(
b
)5]£¼0
£»
ËùÒÔa3+b3¡Ý
ab
(a2+b2)
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÈý½ÇÐΡ¢Ô²µÄÓйØ֪ʶ£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦£¬¼°Í¼ÐÎÔÚ¾ØÕó¶ÔÓ¦µÄ±ä»»Ïµı仯Ìص㣬¿¼²éÔËËãÇó½âÄÜÁ¦»¹¿¼²éÇúÏߵļ«×ø±ê·½³ÌµÈ»ù±¾ÖªÊ¶£¬¿¼²éת»¯ÎÊÌâµÄÄÜÁ¦£®ÁíÍâ´ËÌâÒ²¿¼²é²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄÇø±ðºÍÁªÏµ£¬Á½ÕßÒª»á»¥Ïàת»¯£¬¸ù¾Ýʵ¼ÊÇé¿öÑ¡Ôñ²»Í¬µÄ·½³Ì½øÐÐÇó½â£¬ÕâÒ²ÊÇÿÄê¸ß¿¼±Ø¿¼µÄÈȵãÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÑ¡×öÌâ±¾Ìâ°üÀ¨A£¬B£¬C£¬DËÄСÌ⣬ÇëÑ¡¶¨ÆäÖÐ Á½Ìâ ×÷´ð£¬Ã¿Ð¡Ìâ10·Ö£¬¹²¼Æ20·Ö£¬
½â´ðʱӦд³öÎÄ×Ö˵Ã÷£¬Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
AÑ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
×ÔÔ²OÍâÒ»µãPÒýÔ²µÄÒ»ÌõÇÐÏßPA£¬ÇеãΪA£¬MΪPAµÄÖе㣬¹ýµãMÒýÔ²OµÄ¸îÏß½»¸ÃÔ²ÓÚB¡¢CÁ½µã£¬ÇÒ¡ÏBMP=100¡ã£¬¡ÏBPC=40¡ã£¬Çó¡ÏMPBµÄ´óС£®
BÑ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¶þ½×¾ØÕóA=
ab
cd
£¬¾ØÕóAÊôÓÚÌØÕ÷Öµ¦Ë1=-1µÄÒ»¸öÌØÕ÷ÏòÁ¿Îª¦Á1=
1
-1
£¬ÊôÓÚÌØÕ÷Öµ¦Ë2=4µÄÒ»¸öÌØÕ÷ÏòÁ¿Îª¦Á2=
3
2
£®Çó¾ØÕóA£®
CÑ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=2cos¦Á
y=sin¦Á
(¦ÁΪ²ÎÊý)
£®ÒÔÖ±½Ç×ø±êϵԭµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos(¦È-
¦Ð
4
)=2
2
£®µã
PΪÇúÏßCÉϵĶ¯µã£¬ÇóµãPµ½Ö±Ïßl¾àÀëµÄ×î´óÖµ£®
DÑ¡ÐÞ4-5£º²»µÈʽѡ½²
ÈôÕýÊýa£¬b£¬cÂú×ãa+b+c=1£¬Çó
1
3a+2
+
1
3b+2
+
1
3c+2
µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ËÞǨһģ£©¡¾Ñ¡×öÌâ¡¿±¾Ìâ°üÀ¨A¡¢B¡¢C¡¢DËÄСÌ⣬ÇëÑ¡¶¨ÆäÖÐÁ½Ì⣬²¢ÔÚÏàÓ¦µÄ´ðÌâÇøÓòÄÚ×÷´ð£®Èô¶à×ö£¬Ôò°´×÷´ðµÄÇ°Á½ÌâÆÀ·Ö£®½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬ÒÑÖªAB£¬CDÊÇÔ²OµÄÁ½ÌõÏÒ£¬ÇÒABÊÇÏ߶ÎCDµÄ ´¹Ö±Æ½·ÖÏߣ¬ÈôAB=6£¬CD=2
5
£¬ÇóÏ߶ÎACµÄ³¤¶È£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£¨±¾Ð¡ÌâÂú·Ö10·Ö£©
ÒÑÖª¾ØÕóM=
21
1a
µÄÒ»¸öÌØÕ÷ÖµÊÇ3£¬ÇóÖ±Ïßx-2y-3=0ÔÚM×÷ÓÃϵÄÐÂÖ±Ïß·½³Ì£®
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£¨±¾Ð¡ÌâÂú·Ö10·Ö£©
ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌÊÇ
x=cos¦Á
y=sin¦Á+1
£¨¦ÁÊDzÎÊý£©£¬ÈôÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬȡÓëÖ±½Ç×ø±êϵÖÐÏàͬµÄµ¥Î»³¤¶È£¬½¨Á¢¼«×ø±êϵ£¬ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£¨±¾Ð¡ÌâÂú·Ö10·Ö£©
ÒÑÖª¹ØÓÚxµÄ²»µÈʽ|ax-1|+|ax-a|¡Ý1µÄ½â¼¯ÎªR£¬ÇóÕýʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×÷Ì⣬±¾Ìâ°üÀ¨A¡¢B¡¢C¡¢DËÄСÌ⣬ÇëÑ¡¶¨ÆäÖÐÁ½Ì⣬²¢ÔÚÏàÓ¦µÄ´ðÌâÇøÓòÄÚ×÷´ð£®Èô¶à×ö£¬Ôò°´×÷´ðµÄÇ°Á½ÌâÆÀ·Ö£®½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®£¨¼¸ºÎÖ¤Ã÷Ñ¡½²£©
Èçͼ£¬ABÊÇ°ëÔ²µÄÖ±¾¶£¬CÊÇABÑÓ³¤ÏßÉÏÒ»µã£¬CDÇаëÔ²ÓÚµãD£¬CD=2£¬DE¡ÍAB£¬´¹×ãΪE£¬ÇÒEÊÇOBµÄÖе㣬ÇóBCµÄ³¤£®
B£®£¨¾ØÕóÓë±ä»»£©
ÒÑÖª¾ØÕó
12
2a
µÄÊôÓÚÌØÕ÷ÖµbµÄÒ»¸öÌØÕ÷ÏòÁ¿Îª
1
1
£¬ÇóʵÊýa¡¢bµÄÖµ£®
C£®£¨¼«×ø±êÓë²ÎÊý·½³Ì£©
ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµãA£¨1£¬-2£©ÔÚÇúÏß
x=2pt2
y=2pt
£¨tΪ²ÎÊý£¬pΪÕý³£Êý£©£¬ÇópµÄÖµ£®
D£®£¨²»µÈʽѡ½²£©
Éèa1£¬a2£¬a3¾ùΪÕýÊý£¬ÇÒa1+a2+a3=1£¬ÇóÖ¤£º
1
a1
+
1
a2
+
1
a3
¡Ý9
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×÷Ì⣬±¾Ìâ°üÀ¨A¡¢B¡¢C¡¢DËÄСÌ⣬ÇëÑ¡¶¨ÆäÖÐÁ½Ì⣬²¢ÔÚÏàÓ¦µÄ´ðÌâÇøÓòÄÚ×÷´ð£®Èô¶à×ö£¬Ôò°´×÷´ðµÄÇ°Á½ÌâÆÀ·Ö£®½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®£¨¼¸ºÎÖ¤Ã÷Ñ¡½²£©
Èçͼ£¬ÒÑÖªÁ½Ô²½»ÓÚA¡¢BÁ½µã£¬¹ýµãA¡¢BµÄÖ±Ïß·Ö±ðÓëÁ½Ô²½»ÓÚP¡¢QºÍM¡¢N£®ÇóÖ¤£ºPM¡ÎQN£®
B£®£¨¾ØÕóÓë±ä»»£©
ÒÑÖª¾ØÕóAµÄÄæ¾ØÕóA-1=
10
02
£¬Çó¾ØÕóA£®
C£®£¨¼«×ø±êÓë²ÎÊý·½³Ì£©
ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¹ýÍÖÔ²
x2
12
+
y2
4
=1
ÔÚµÚÒ»ÏóÏÞ´¦µÄÒ»µãP£¨x£¬y£©·Ö±ð×÷xÖá¡¢yÖáµÄÁ½Ìõ´¹Ïߣ¬´¹×ã·Ö±ðΪM¡¢N£¬Çó¾ØÐÎPMONÖܳ¤×î´óֵʱµãPµÄ×ø±ê£®
D£®£¨²»µÈʽѡ½²£©
ÒÑÖª¹ØÓÚxµÄ²»µÈʽ|x-a|+1-x£¾0µÄ½â¼¯ÎªR£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸