精英家教网 > 高中数学 > 题目详情

【题目】下列命题中正确命题的序号是(    )

①函数fx)在定义域R内可导,f1)=0”函数fx)在x1处取极值的充分不必要条件;

②函数fx)=x3ax[12]上单调递增,则a4

③在一次射箭比赛中,甲、乙两名射箭手各射箭一次.设命题p甲射中十环,命题q乙射中十环,则命题至少有一名射箭手没有射中十环可表示为(¬p)∨(¬q);

④若椭圆左、右焦点分别为F1F2,垂直于x轴的直线交椭圆于AB两点,当直线过右焦点时,ABF1的周长取最大值

A.①③④B.②③④C.②③D.①④

【答案】B

【解析】

①通过举反例说明错误

,由题知:等价于恒成立.再求即可判断②正确.

③命题“至少有一名射箭手没有射中十环”,分三种情况,可表示为:.故③正确.

④当直线过右焦点时,的周长为,其他情况的周长均小于,故④正确.

①例如:

x1不是fx)的极值点,故①错误.

,由题知:等价于恒成立.

即:.所以得到:.故②正确.

③命题“至少有一名射箭手没有射中十环”,分三种情况:甲射中,乙没射中;乙射中,甲没射中;甲乙都没射中,可表示为:.故③正确.

④当直线过右焦点时,的周长为,不过右焦点时,的周长均小于,故④正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,圆与圆关于直线对称.

1)求圆的方程;

2)过直线上的点分别作斜率为4的两条直线,求使得被圆截得的弦长与被圆截得的弦长相等时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具厂有方木料90,五合板600,准备加工成书桌和书橱出售.已知生产第张书桌需要方木料O.l,五合板2,生产每个书橱而要方木料0.2,五合板1,出售一张方桌可获利润80元,出售一个书橱可获利润120元.

(1)如果只安排生产书桌,可获利润多少?

(2)怎样安排生产可使所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法中正确的有______.(填序号)①数据22334673的众数与中位数相等;②数据13579的方差是数据26101418的方差的一半;③一组数据的方差大小反映该组数据的波动性,若方差越大,则波动性越大,方差越小,则波动性越小.④频率分布直方图中各小长方形的面积等于相应各组的频数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)设是函数的极值点,求的值,并求的单调区间;

(2)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】顺次连接椭圆的四个顶点恰好构成了一个边长为且面积为的菱形。

(1)求椭圆的方程;

(2)是椭圆上的两个不同点,若直线的斜率之积为(以为坐标原点),线段上有一点满足,连接并延长交椭圆于点,求椭圆的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an} 满足a1=a,=can+1﹣c(n∈N*),其中a、c为实数,且c≠0.

(1)求数列{an} 的通项公式;

(2)设a=,c=,bn=n(1﹣an)(n∈N*),求数列 {bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABC-A1B1C1中,底面ABC是边长为2的等边三角形,上、下底面的面积之比为14,侧面A1ABB1⊥底面ABC,并且A1A=A1B1,∠AA1B=90°

1)平面A1C1B∩平面ABC=l,证明:A1C1l

2)求四棱锥B-A1ACC1的体积.

查看答案和解析>>

同步练习册答案