精英家教网 > 高中数学 > 题目详情
7.化简f(x)=tan(x+$\frac{π}{4}$)+tan(x-$\frac{π}{4}$),并求出函数的最小正周期.

分析 利用正切函数加法定理进行化简,通分合并同类项后,再利用正切加法定理能得到简化的函数式,由正切函数性质能求出最小正周期.

解答 解:f(x)=tan(x+$\frac{π}{4}$)+tan(x-$\frac{π}{4}$)
=$\frac{tanx+tan\frac{π}{4}}{1-tanxtan\frac{π}{4}}$+$\frac{tanx-tan\frac{π}{4}}{1+tanxtan\frac{π}{4}}$
=$\frac{1+tanx}{1-tanx}$+$\frac{tanx-1}{1+tanx}$
=$\frac{ta{n}^{2}x+2tanx+1}{1-ta{n}^{2}x}$-$\frac{ta{n}^{2}x-2tanx+1}{1-ta{n}^{2}x}$
=$\frac{4tanx}{1-ta{n}^{2}x}$
=2tan2x.
∴f(x)=2tan2x,f(x)的最小正周期T=$\frac{π}{2}$.

点评 本题考查三角函数的化简求值,考查三角函数最小正周期的求法,是中档题,解题时要认真审题,注意正切加法定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.用符号“⇒”或“≠>”填空.
(1)a≠0,或b≠0≠>ab≠0.
(2)a≠0,或b≠0⇒a2+b2>0.
(3)a>-b⇒(a+b)(a2+b2)>0.
(4)a>|b|⇒a+|b|>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的函数f(x)的图象是连续不断的,且自变量与对应的函数值有如下关系:
 x 1 2 3
f(x) 3 4-1
那么函数f(x)一定存在零点的区间是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等差数列{an}中,a4=18,a11=32,则a18=46.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一船在航行中的燃料费与其速度v的立方成正比,已知v=10km/h时燃料费是6元/h,而其他与v无关的费用是96元/h,问v为何值时可使航行每公里所需费用的总和最小?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}中,a2,a8是函数f(x)=x2-3x+5的两个零点.则a1+a9的值为(  )
A.-3B.5C.3D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=$\frac{x}{sinx}$,则f′($\frac{π}{2}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C1:y2=$\frac{1}{2}$x的焦点与抛物线C2:x2=2px(p>0)的焦点之间的距离为$\frac{\sqrt{65}}{8}$.
(1)求抛物线C2的标准方程;
(2)设C1与C2在第一象限的交点为A,过A的斜率为k(k>0)的直线l1与C1的另一个交点为B,过A与l1垂直的直线l2与C2的另一个交点为C,设m=$\frac{|\overrightarrow{AB}|}{|\overrightarrow{AC}|}$,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,圆C:(x-1)2+y2=5和y轴的负半轴相交于A点,点B在圆C上(不同于点A),M为AB的中点,且|OA|=|OM|,则点M的坐标为$(\frac{8}{5},-\frac{6}{5})$.

查看答案和解析>>

同步练习册答案