分析 根据题意建立相应的函数模型是解决本题的关键.建立起函数的模型之后,根据函数的类型选择合适的方法求解相应的最值问题,充分发挥导数的工具作用.
解答 解:设船速度为x(x>0)时,燃料费用为Q元,则Q=kx3,
由6=k×103可得k=$\frac{3}{500}$,∴Q=$\frac{3}{500}$x3,
∴总费用y=($\frac{3}{500}$x3+96)$•\frac{1}{x}$=$\frac{3}{500}$x2+$\frac{96}{x}$,
∴y′=$\frac{6}{500}$x-$\frac{96}{{x}^{2}}$,令y′=0得x=20,
当x∈(0,20)时,y′<0,此时函数单调递减,
当x∈(20,+∞)时,y′>0,此时函数单调递增,
∴当x=20时,y取得最小值,
答:此轮船以20公里/小时的速度使行驶每公里的费用总和最小.
点评 本题考查函数模型的应用,考查建立函数模型解决实际问题的思想和方法.建立起函数模型之后选择导数作为工具求解该最值问题,体现了转化与化归的思想.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com