精英家教网 > 高中数学 > 题目详情
1.已知数列{an}满足a1=1,an+1=2an+3,n∈N*
(Ⅰ)求证:数列{an+3}是等比数列;
(Ⅱ)求数列{nan}的前n项和Sn

分析 (I)an+1=2an+3,n∈N*.变形为an+1+3=2(an+3),利用等比数列的定义即可证明.
(Ⅱ)由(I)可得an=2n+1-3,因此nan=n•2n+1-3n.利用“错位相减法”、等比数列与等差数列的求和公式即可得出.

解答 (I)证明:∵an+1=2an+3,n∈N*.∴an+1+3=2(an+3),
∴数列{an+3}是等比数列,公比为2,首项为4.
(Ⅱ)解:由(I)可得:an+3=4×2n-1=2n+1,∴an=2n+1-3,
∴nan=n•2n+1-3n.
设数列{n•2n+1}的前n项和为An
则An=22+2×23+3×24+…+n•2n+1
2An=23+2×24+…+(n-1)•2n+1+n•2n+2
∴-An=22+23+…+2n+1-n•2n+2=$\frac{4({2}^{n}-1)}{2-1}$-n•2n+2=(1-n)•2n+2-4,
∴An=(n-1)•2n+2+4,
∴数列{nan}的前n项和Sn=(n-1)•2n+2+4-$\frac{3n(n+1)}{2}$.

点评 本题考查了“错位相减法”、等比数列与等差数列的定义通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x+1|,g(x)=2|x|+a.
(1)当a=-1时,解不等式f(x)≤g(x);
(2)若存在x0∈R,使得f(x0)≥$\frac{1}{2}$g(x0),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=|x-1|+|x+1|的增区间为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁UA)∪B={2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)求曲线C1的直角坐标方程;
(2)曲线C2的极坐标方程为θ=$\frac{π}{6}$(ρ∈R),求C1与C2的公共点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆O:x2+y2=4与x轴负半轴的交点为A,点P在直线l:$\sqrt{3}$x+y-a=0上,过点P作圆O的切线,切点为T
(1)若a=8,切点T($\sqrt{3}$,-1),求点P的坐标;
(2)若PA=2PT,求实数a的取值范围;
(3)若不过原点O的直线与圆O交于B,C两点,且满足直线OB,BC,OC的斜率依次成等比数列,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$f({2^x})=\frac{1}{x}$,则f(3)=(  )
A.$\frac{1}{3}$B.$\frac{1}{8}$C.log32D.log23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2+blnx在x=1处有极值$\frac{1}{2}$.
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=$\left\{\begin{array}{l}1,x为有理数\\ 0,x为无理数\end{array}$,称为狄利克雷函数,则关于函数f(x)有以下四个命题:
①f(f(x))=1;
②函数f(x)是偶函数;
③任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立;
④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.
其中真命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案