精英家教网 > 高中数学 > 题目详情

【题目】已知球内接正四棱锥的高为相交于,球的表面积为,若中点.

(1)求异面直线所成角的余弦值;

(2)求点到平面的距离.

【答案】(1);(2).

【解析】试题分析:(1) 由球的表面积求出球的半径R,设球心为,则必在上,连,根据球的性质有,求解易得底面边长以及侧棱长,则结论易得;(2)证明平面,则到平面的距离等于到平面的距离,由,则结论易得.

试题解析:由球的表面积公式,得球的半径

设球心为,在正四棱锥中,高为,则必在上,

,则

则在,有,即,可得正方形的边长为,

侧棱.

(1)在正方形中, ,所以是异面直线所成的角或其补角,

中点,在等腰中,可得,斜高

则在中,

所以异面直线所成的角的余弦值为

(2)由中点,得

且满足平面平面,所以平面

所以到平面的距离等于到平面的距离,

又因为,

再设到平面的距离为,则由

可得,则

所以点到平面的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当 取一切非负实数时,若,求的范围;

(2)若函数存在极大值,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取高一年级n名学生,测得他们的身高分别是a1 , a2 , …,an , 则如图所示的程序框图输出的s=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心和抛物线的顶点都在坐标原点 有公共焦点,点轴正半轴上,且的长轴长、短轴长及点到直线的距离成等比数列。

(Ⅰ)当的准线与直线的距离为时,求的方程;

(Ⅱ)设过点且斜率为的直线 两点,交 两点。当时,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信运动和运动手环的普及,增强了人民运动的积极性,每天一万步称为一种健康时尚,某中学在全校范围内内积极倡导和督促师生开展“每天一万步”活动,经过几个月的扎实落地工作后,学校想了解全校师生每天一万步的情况,学校界定一人一天走路不足千步为不健康生活方式,不少于千步为超健康生活方式者,其他为一般生活方式者,学校委托数学组调查,数学组采用分层抽样的办法去估计全校师生的情况,结合实际及便于分层抽样,认定全校教师人数为人,高一学生人数为人,高二学生人数人,高三学生人数,从中抽取人作为调查对象,得到了如图所示的这人的频率分布直方图,这人中有人被学校界定为不健康生活方式者.

(1)求这次作为抽样调查对象的教师人数;

(2)根据频率分布直方图估算全校师生每人一天走路步数的中位数(四舍五入精确到整数步);

(3)校办公室欲从全校师生中速记抽取人作为“每天一万步”活动的慰问对象,计划学校界定不健康生活方式者鞭策性精神鼓励元,超健康生活方式者表彰奖励元,一般生活方式者鼓励性奖励元,利用样本估计总体,将频率视为概率,求这次校办公室慰问奖励金额恰好为元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=x2k)(1+k(k∈Z),且f(x)在(0,+∞)上单调递增.
(1)求实数k的值,并写出相应的函数f(x)的解析式;
(2)试判断是否存在正数q,使函数g(x)=1﹣qf(x)+(2q﹣1)x在区间[﹣1,2]上的值域为[﹣4, ].若存在,求出q的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中既是偶函数又在(﹣∞,0)上是增函数的是(
A.y=x
B.y=
C.y=x2
D.y=x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,且在(0,+∞)是增函数,又f(﹣3)=0,则不等式xf(x)≥0的解集是(
A.{x|﹣3≤x≤3}
B.{x|﹣3≤x<0或0<x≤3}
C.{x|x≤﹣3或x≥3}
D.{x|x≤﹣3或x=0或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,将曲线为参数)上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线;以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程;

(2)已知点,直线的极坐标方程为,它与曲线的交点为 ,与曲线的交点为,求的面积.

查看答案和解析>>

同步练习册答案